Meta-Analysis With a Continuous Covariate That Is Differentially Categorized Across Studies

We propose taking advantage of methodology for missing data to estimate relationships and adjust outcomes in a meta-analysis where a continuous covariate is differentially categorized across studies. The proposed method incorporates all available data in an implementation of the expectation-maximiza...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:American journal of epidemiology Ročník 183; číslo 5; s. 507
Hlavní autoři: Perin, Jamie, Fischer Walker, Christa L, Black, Robert E, Aryee, Martin J
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.03.2016
Témata:
ISSN:1476-6256, 1476-6256
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose taking advantage of methodology for missing data to estimate relationships and adjust outcomes in a meta-analysis where a continuous covariate is differentially categorized across studies. The proposed method incorporates all available data in an implementation of the expectation-maximization algorithm. We use simulations to demonstrate that the proposed method eliminates bias that would arise by ignoring a covariate and generalizes the meta-analytical approach for incorporating covariates that are not uniformly categorized. The proposed method is illustrated in an application for estimating diarrhea incidence in children aged ≤59 months.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1476-6256
1476-6256
DOI:10.1093/aje/kwv140