Robust Dawoud-Kibria estimator for handling multicollinearity and outliers in the linear regression model
In the linear regression model, least-squares (LS) estimator is usually used for estimating regression parameters. LS is an unreliable and unfavourable estimator when multicollinearity and outlier problems exist in the model. Therefore, we propose a new robust regression estimator for solving the ab...
Uložené v:
| Vydané v: | Journal of statistical computation and simulation Ročník 91; číslo 17; s. 3678 - 3692 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Taylor & Francis
22.11.2021
|
| Predmet: | |
| ISSN: | 0094-9655, 1563-5163 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In the linear regression model, least-squares (LS) estimator is usually used for estimating regression parameters. LS is an unreliable and unfavourable estimator when multicollinearity and outlier problems exist in the model. Therefore, we propose a new robust regression estimator for solving the abovementioned problems simultaneously. We conducted theoretical comparisons and different scenarios of simulation studies, and a real-life dataset was employed to show the performance of the proposed estimator. Results showed that the proposed estimator performs better than other estimators when multicollinearity and outlier problems occur simultaneously in the model. |
|---|---|
| ISSN: | 0094-9655 1563-5163 |
| DOI: | 10.1080/00949655.2021.1945063 |