Robust Dawoud-Kibria estimator for handling multicollinearity and outliers in the linear regression model

In the linear regression model, least-squares (LS) estimator is usually used for estimating regression parameters. LS is an unreliable and unfavourable estimator when multicollinearity and outlier problems exist in the model. Therefore, we propose a new robust regression estimator for solving the ab...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of statistical computation and simulation Ročník 91; číslo 17; s. 3678 - 3692
Hlavní autori: Dawoud, Issam, Abonazel, Mohamed R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis 22.11.2021
Predmet:
ISSN:0094-9655, 1563-5163
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In the linear regression model, least-squares (LS) estimator is usually used for estimating regression parameters. LS is an unreliable and unfavourable estimator when multicollinearity and outlier problems exist in the model. Therefore, we propose a new robust regression estimator for solving the abovementioned problems simultaneously. We conducted theoretical comparisons and different scenarios of simulation studies, and a real-life dataset was employed to show the performance of the proposed estimator. Results showed that the proposed estimator performs better than other estimators when multicollinearity and outlier problems occur simultaneously in the model.
ISSN:0094-9655
1563-5163
DOI:10.1080/00949655.2021.1945063