Robust Dawoud-Kibria estimator for handling multicollinearity and outliers in the linear regression model
In the linear regression model, least-squares (LS) estimator is usually used for estimating regression parameters. LS is an unreliable and unfavourable estimator when multicollinearity and outlier problems exist in the model. Therefore, we propose a new robust regression estimator for solving the ab...
Uloženo v:
| Vydáno v: | Journal of statistical computation and simulation Ročník 91; číslo 17; s. 3678 - 3692 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Taylor & Francis
22.11.2021
|
| Témata: | |
| ISSN: | 0094-9655, 1563-5163 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In the linear regression model, least-squares (LS) estimator is usually used for estimating regression parameters. LS is an unreliable and unfavourable estimator when multicollinearity and outlier problems exist in the model. Therefore, we propose a new robust regression estimator for solving the abovementioned problems simultaneously. We conducted theoretical comparisons and different scenarios of simulation studies, and a real-life dataset was employed to show the performance of the proposed estimator. Results showed that the proposed estimator performs better than other estimators when multicollinearity and outlier problems occur simultaneously in the model. |
|---|---|
| ISSN: | 0094-9655 1563-5163 |
| DOI: | 10.1080/00949655.2021.1945063 |