Unbiased variable importance for random forests

The default variable-importance measure in random forests, Gini importance, has been shown to suffer from the bias of the underlying Gini-gain splitting criterion. While the alternative permutation importance is generally accepted as a reliable measure of variable importance, it is also computationa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Communications in statistics. Theory and methods Ročník 51; číslo 5; s. 1413 - 1425
Hlavný autor: Loecher, Markus
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis 04.03.2022
Predmet:
ISSN:0361-0926, 1532-415X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The default variable-importance measure in random forests, Gini importance, has been shown to suffer from the bias of the underlying Gini-gain splitting criterion. While the alternative permutation importance is generally accepted as a reliable measure of variable importance, it is also computationally demanding and suffers from other shortcomings. We propose a simple solution to the misleading/untrustworthy Gini importance which can be viewed as an over-fitting problem: we compute the loss reduction on the out-of-bag instead of the in-bag training samples.
ISSN:0361-0926
1532-415X
DOI:10.1080/03610926.2020.1764042