k-order Gaussian Fibonacci polynomials and applications to the coding/decoding theory

In this paper we define k-order Gaussian Fibonacci polynomials with boundary conditions and give the generating function, explicit formula and some identities for k-order Gaussian Fibonacci polynomials. We introduce the matrix represent and we obtain the k-order Gaussian Fibonacci Polynomials matrix...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of discrete mathematical sciences & cryptography Ročník 25; číslo 5; s. 1399 - 1416
Hlavní autori: Asci, Mustafa, Aydinyuz, Suleyman
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis 04.07.2022
Predmet:
ISSN:0972-0529, 2169-0065
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper we define k-order Gaussian Fibonacci polynomials with boundary conditions and give the generating function, explicit formula and some identities for k-order Gaussian Fibonacci polynomials. We introduce the matrix represent and we obtain the k-order Gaussian Fibonacci Polynomials matrix. We define a new coding theory called k-order Gaussian Fibonacci Polynomials coding theory and establish the code elements for values of k. This coding/decoding method bound to the Q k (x), R k (x) and E k,n (x) matrices. So, this method is different from the classical algebraic coding. Consequently, with this method, we move the coding theory onto a complex space which is a different field. Therefore, new working areas are created.
ISSN:0972-0529
2169-0065
DOI:10.1080/09720529.2020.1816917