k-order Gaussian Fibonacci polynomials and applications to the coding/decoding theory
In this paper we define k-order Gaussian Fibonacci polynomials with boundary conditions and give the generating function, explicit formula and some identities for k-order Gaussian Fibonacci polynomials. We introduce the matrix represent and we obtain the k-order Gaussian Fibonacci Polynomials matrix...
Uložené v:
| Vydané v: | Journal of discrete mathematical sciences & cryptography Ročník 25; číslo 5; s. 1399 - 1416 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Taylor & Francis
04.07.2022
|
| Predmet: | |
| ISSN: | 0972-0529, 2169-0065 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper we define k-order Gaussian Fibonacci polynomials with boundary conditions and give the generating function, explicit formula and some identities for k-order Gaussian Fibonacci polynomials. We introduce the matrix represent and we obtain the k-order Gaussian Fibonacci Polynomials matrix. We define a new coding theory called k-order Gaussian Fibonacci Polynomials coding theory and establish the code elements for values of k. This coding/decoding method bound to the Q
k
(x), R
k
(x) and E
k,n
(x) matrices. So, this method is different from the classical algebraic coding. Consequently, with this method, we move the coding theory onto a complex space which is a different field. Therefore, new working areas are created. |
|---|---|
| ISSN: | 0972-0529 2169-0065 |
| DOI: | 10.1080/09720529.2020.1816917 |