Hurricane Forecasting: A Novel Multimodal Machine Learning Framework

This paper describes a novel machine learning (ML) framework for tropical cyclone intensity and track forecasting, combining multiple ML techniques and utilizing diverse data sources. Our multimodal framework, called Hurricast, efficiently combines spatial–temporal data with statistical data by extr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Weather and forecasting Ročník 37; číslo 6; s. 817 - 831
Hlavní autori: Boussioux, Léonard, Zeng, Cynthia, Guénais, Théo, Bertsimas, Dimitris
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston American Meteorological Society 01.06.2022
Predmet:
ISSN:0882-8156, 1520-0434
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper describes a novel machine learning (ML) framework for tropical cyclone intensity and track forecasting, combining multiple ML techniques and utilizing diverse data sources. Our multimodal framework, called Hurricast, efficiently combines spatial–temporal data with statistical data by extracting features with deep learning encoder–decoder architectures and predicting with gradient-boosted trees. We evaluate our models in the North Atlantic and eastern Pacific basins in 2016–19 for 24-h lead-time track and intensity forecasts and show they achieve comparable mean absolute error and skill to current operational forecast models while computing in seconds. Furthermore, the inclusion of Hurricast into an operational forecast consensus model could improve upon the National Hurricane Center’s official forecast, thus highlighting the complementary properties with existing approaches. In summary, our work demonstrates that utilizing machine learning techniques to combine different data sources can lead to new opportunities in tropical cyclone forecasting.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0882-8156
1520-0434
DOI:10.1175/WAF-D-21-0091.1