Joint analysis of left‐censored longitudinal biomarker and binary outcome via latent class modeling

Joint latent class modeling is an appealing approach for evaluating the association between a longitudinal biomarker and clinical outcome when the study population is heterogeneous. The link between the biomarker trajectory and the risk of event is reflected by the latent classes, which accommodate...

Full description

Saved in:
Bibliographic Details
Published in:Statistics in medicine Vol. 37; no. 13; pp. 2162 - 2173
Main Authors: Li, Menghan, Kong, Lan
Format: Journal Article
Language:English
Published: England Wiley Subscription Services, Inc 15.06.2018
Subjects:
ISSN:0277-6715, 1097-0258, 1097-0258
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Joint latent class modeling is an appealing approach for evaluating the association between a longitudinal biomarker and clinical outcome when the study population is heterogeneous. The link between the biomarker trajectory and the risk of event is reflected by the latent classes, which accommodate the underlying population heterogeneity. The estimation of joint latent class models may be complicated by the censored data in the biomarker measurements due to detection limits. We propose a modified likelihood function under the parametric assumption of biomarker distribution and develop a Monte Carlo expectation‐maximization algorithm for joint analysis of a biomarker and a binary outcome. We conduct simulation studies to demonstrate the satisfactory performance of our Monte Carlo expectation‐maximization algorithm and the superiority of our method to the naive imputation method for handling censored biomarker data. In addition, we apply our method to the Genetic and Inflammatory Markers of Sepsis study to investigate the role of inflammatory biomarker profile in predicting 90‐day mortality for patients hospitalized with community‐acquired pneumonia.
AbstractList Joint latent class modeling is an appealing approach for evaluating the association between a longitudinal biomarker and clinical outcome when the study population is heterogeneous. The link between the biomarker trajectory and the risk of event is reflected by the latent classes, which accommodate the underlying population heterogeneity. The estimation of joint latent class models may be complicated by the censored data in the biomarker measurements due to detection limits. We propose a modified likelihood function under the parametric assumption of biomarker distribution and develop a Monte Carlo expectation‐maximization algorithm for joint analysis of a biomarker and a binary outcome. We conduct simulation studies to demonstrate the satisfactory performance of our Monte Carlo expectation‐maximization algorithm and the superiority of our method to the naive imputation method for handling censored biomarker data. In addition, we apply our method to the Genetic and Inflammatory Markers of Sepsis study to investigate the role of inflammatory biomarker profile in predicting 90‐day mortality for patients hospitalized with community‐acquired pneumonia.
Joint latent class modeling is an appealing approach for evaluating the association between a longitudinal biomarker and clinical outcome when the study population is heterogeneous. The link between the biomarker trajectory and the risk of event is reflected by the latent classes, which accommodate the underlying population heterogeneity. The estimation of joint latent class models may be complicated by the censored data in the biomarker measurements due to detection limits. We propose a modified likelihood function under the parametric assumption of biomarker distribution and develop a Monte Carlo expectation-maximization algorithm for joint analysis of a biomarker and a binary outcome. We conduct simulation studies to demonstrate the satisfactory performance of our Monte Carlo expectation-maximization algorithm and the superiority of our method to the naive imputation method for handling censored biomarker data. In addition, we apply our method to the Genetic and Inflammatory Markers of Sepsis study to investigate the role of inflammatory biomarker profile in predicting 90-day mortality for patients hospitalized with community-acquired pneumonia.Joint latent class modeling is an appealing approach for evaluating the association between a longitudinal biomarker and clinical outcome when the study population is heterogeneous. The link between the biomarker trajectory and the risk of event is reflected by the latent classes, which accommodate the underlying population heterogeneity. The estimation of joint latent class models may be complicated by the censored data in the biomarker measurements due to detection limits. We propose a modified likelihood function under the parametric assumption of biomarker distribution and develop a Monte Carlo expectation-maximization algorithm for joint analysis of a biomarker and a binary outcome. We conduct simulation studies to demonstrate the satisfactory performance of our Monte Carlo expectation-maximization algorithm and the superiority of our method to the naive imputation method for handling censored biomarker data. In addition, we apply our method to the Genetic and Inflammatory Markers of Sepsis study to investigate the role of inflammatory biomarker profile in predicting 90-day mortality for patients hospitalized with community-acquired pneumonia.
Joint latent class modeling is an appealing approach for evaluating the association between a longitudinal biomarker and clinical outcome when the study population is heterogeneous. The link between the biomarker trajectory and the risk of event is reflected by the latent classes, which accommodate the underlying population heterogeneity. The estimation of joint latent class models may be complicated by the censored data in the biomarker measurements due to detection limits. We propose a modified likelihood function under the parametric assumption of biomarker distribution and develop a Monte Carlo expectation‐maximization algorithm for joint analysis of a biomarker and a binary outcome. We conduct simulation studies to demonstrate the satisfactory performance of our Monte Carlo expectation‐maximization algorithm and the superiority of our method to the naive imputation method for handling censored biomarker data. In addition, we apply our method to the Genetic and Inflammatory Markers of Sepsis study to investigate the role of inflammatory biomarker profile in predicting 90‐day mortality for patients hospitalized with community‐acquired pneumonia.
Author Kong, Lan
Li, Menghan
Author_xml – sequence: 1
  givenname: Menghan
  surname: Li
  fullname: Li, Menghan
  organization: Department of Public Health Sciences, Penn State College of Medicine
– sequence: 2
  givenname: Lan
  orcidid: 0000-0001-6098-9445
  surname: Kong
  fullname: Kong, Lan
  email: luk14@psu.edu
  organization: Department of Public Health Sciences, Penn State College of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29611202$$D View this record in MEDLINE/PubMed
BookMark eNp10ctKxDAUBuAgIzpewCeQgBs3HZO0k7RLEa-MuFDXJU1PJJomY9Iqs_MRfEafxIxXEFyFwJcT_vNvoJHzDhDaoWRCCWEH0XQTwQu2gsaUVCIjbFqO0JgwITIu6HQdbcR4TwilUybW0DqrOKWMsDGCC29cj6WTdhFNxF5jC7p_e3lV4KIP0GLr3Z3ph9YkgxvjOxkeIKQnbbo5GRbYD73yHeAnI7GVPaSBysoYcedbsMbdbaFVLW2E7a9zE92eHN8cnWWzq9Pzo8NZpnJKWCYrpaAsqGy04EJDU0reMqFJ2WgtoCC8LbTkQARjFTCeN1xzqjhpyoqzPM830f7n3HnwjwPEvu5MVGCtdOCHWKfINGdkKqpE9_7Qez-EFHGpCpHTgpZFUrtfamg6aOt5MCn-ov5e4O-PKvgYA-gfQkm97KZO3dTLbhLNPumzsbD419XX55cf_h3jqJBd
Cites_doi 10.1001/archinte.167.15.1655
10.1177/0962280212445839
10.1016/j.csda.2008.10.017
10.1093/biostatistics/1.4.355
10.1080/10618600.1998.10474787
10.1002/sim.1923
10.1289/ehp.8528
10.1002/sim.3905
10.1111/j.1541-0420.2009.01234.x
10.1016/j.csda.2014.11.011
10.1093/biostatistics/kxp009
10.1111/biom.12232
10.1021/es053368a
10.18637/jss.v078.i02
10.1037/1082-989X.8.3.338
10.1016/j.csda.2015.05.007
10.1080/1047322X.1990.10389587
10.1198/016214502753479220
10.1002/(SICI)1097-0258(20000530)19:10<1303::AID-SIM424>3.0.CO;2-E
10.1111/1467-9876.00207
10.1016/S0167-9473(01)00017-2
10.1177/0049124101029003005
10.1111/j.0006-341X.1999.00625.x
10.1002/sim.2659
10.1002/0470036486
10.1214/aos/1176344136
10.1289/ehp.7199
ContentType Journal Article
Copyright Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/sim.7642
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 2173
ExternalDocumentID 29611202
10_1002_sim_7642
SIM7642
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
O8X
NPM
K9.
7X8
ID FETCH-LOGICAL-c3102-a9cce841abf767feb8a6d27f08bff7e406d4fa6e07229e263b6f61c60b8962333
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433594400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0277-6715
1097-0258
IngestDate Sun Nov 09 10:13:41 EST 2025
Tue Oct 07 05:47:32 EDT 2025
Thu Apr 03 07:02:00 EDT 2025
Sat Nov 29 05:32:41 EST 2025
Wed Jan 22 16:41:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords limit of detection (LOD)
joint modeling
longitudinal biomarker
Monte Carlo EM
Language English
License Copyright © 2018 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3102-a9cce841abf767feb8a6d27f08bff7e406d4fa6e07229e263b6f61c60b8962333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6098-9445
PMID 29611202
PQID 2047314184
PQPubID 48361
PageCount 12
ParticipantIDs proquest_miscellaneous_2021320579
proquest_journals_2047314184
pubmed_primary_29611202
crossref_primary_10_1002_sim_7642
wiley_primary_10_1002_sim_7642_SIM7642
PublicationCentury 2000
PublicationDate 15 June 2018
PublicationDateYYYYMMDD 2018-06-15
PublicationDate_xml – month: 06
  year: 2018
  text: 15 June 2018
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 167
2000; 49
2015; 71
2002; 97
1997
2006
2000; 1
2001; 29
2014; 23
2006; 114
2005; 24
1978; 6
2004; 112
2010; 66
2000; 19
2009; 10
2009; 53
2010; 29
2004; 14
2015; 85
2003; 8
2017; 78
1999; 55
2001; 38
2015; 91
1998; 7
2005; 39
1990; 5
2007; 26
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Stephen PB (e_1_2_8_22_1) 1998; 7
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
Tsiatis AA (e_1_2_8_3_1) 2004; 14
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
McLachlan GJ (e_1_2_8_28_1) 1997
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 38
  start-page: 15
  issue: 1
  year: 2001
  end-page: 48
  article-title: Determining the number of components in mixtures of linear models
  publication-title: Comput Stat Data Anal
– volume: 24
  start-page: 65
  issue: 1
  year: 2005
  end-page: 82
  article-title: Joint modeling of bivariate longitudinal data with informative dropout and left‐censoring, with application to the evolution of CD4+ cell count and HIV RNA viral load in response to treatment of HIV infection
  publication-title: Stat Med
– volume: 97
  start-page: 53
  issue: 457
  year: 2002
  end-page: 65
  article-title: Latent class models for joint analysis of longitudinal biomarker and event process data: application to longitudinal prostate‐specic antigen readings and prostate cancer
  publication-title: J Am Stat Assoc
– volume: 8
  start-page: 338
  issue: 3
  year: 2003
  end-page: 363
  article-title: Distributional assumptions of growth mixture models: implications for overextraction of latent trajectory classes
  publication-title: Psychol Methods
– volume: 23
  start-page: 74
  issue: 1
  year: 2014
  end-page: 90
  article-title: Joint latent class models for longitudinal and time‐to‐event data: a review
  publication-title: Stat Methods Med Res
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  end-page: 464
  article-title: Estimating the dimension of a model
  publication-title: Ann Stat
– volume: 91
  start-page: 40
  issue: C
  year: 2015
  end-page: 50
  article-title: Joint latent class model of survival and longitudinal data: an application to CPCRA study
  publication-title: Comput Stat Data Anal
– volume: 39
  start-page: 419A
  issue: 20
  year: 2005
  end-page: 423A
  article-title: More than obvious: better methods for interpreting nondetect data
  publication-title: Environ mental Science and Technol
– volume: 29
  start-page: 374
  issue: 3
  year: 2001
  end-page: 393
  article-title: A SAS procedure based on mixture models for estimating developmental trajectories
  publication-title: Sociol Methods Res
– volume: 78
  start-page: 1
  issue: 2
  year: 2017
  end-page: 56
  article-title: Estimation of extended mixed models using latent classes and latent processes: the R package lcmm
  publication-title: J Stat Software
– volume: 66
  start-page: 11
  issue: 1
  year: 2010
  end-page: 19
  article-title: Score test for conditional independence between longitudinal outcome and time to event given the classes in the joint latent class model
  publication-title: Biometrics
– volume: 112
  start-page: 1691
  issue: 17
  year: 2004
  end-page: 1696
  article-title: Epidemiologic evaluation of measurement data in the presence of detection limits
  publication-title: Environ Health Perspect
– volume: 167
  start-page: 1655
  issue: 15
  year: 2007
  end-page: 1663
  article-title: Understanding the inflammatory cytokine response in pneumonia and sepsis
  publication-title: Arch Intern Med
– volume: 19
  start-page: 1303
  issue: 10
  year: 2000
  end-page: 1318
  article-title: A latent class mixed model for analysing biomarker trajectories with irregularly scheduled observations
  publication-title: Stat Med
– year: 2006
– volume: 10
  start-page: 535
  issue: 3
  year: 2009
  end-page: 549
  article-title: Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of post‐treatment PSA: a joint modelling approach
  publication-title: Biostatistics
– volume: 114
  start-page: 961
  issue: 6
  year: 2006
  end-page: 968
  article-title: A survey of laboratory and statistical issues related to farmworker exposure studies
  publication-title: Environ Health Perspect
– year: 1997
– volume: 7
  start-page: 434
  issue: 4
  year: 1998
  end-page: 455
  article-title: General methods for monitoring convergence of iterative simulations
  publication-title: J Comput Graphical Stat
– volume: 71
  start-page: 102
  issue: 1
  year: 2015
  end-page: 113
  article-title: Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time‐to‐event in presence of censoring and competing risks
  publication-title: Biometrics
– volume: 49
  start-page: 485
  issue: 4
  year: 2000
  end-page: 498
  article-title: Random regression models for human immunodeficiency virus ribonucleic acid data subject to left censoring and informative drop‐outs
  publication-title: Appl Stat
– volume: 85
  start-page: 37
  year: 2015
  end-page: 53
  article-title: A fast EM algorithm for fitting joint models of a binary response and multiple longitudinal covariates subject to detection limits
  publication-title: Comput Stat Data Anal
– volume: 26
  start-page: 2234
  issue: 10
  year: 2007
  end-page: 2245
  article-title: A nonlinear latent class model for joint analysis of multivariate longitudinal data and a binary outcome
  publication-title: Stat Med
– volume: 5
  start-page: 46
  issue: 1
  year: 1990
  end-page: 51
  article-title: Estimation of average concentration in the presence of nondetectable values
  publication-title: Appl Occup Environ Hyg
– volume: 53
  start-page: 1142
  issue: 4
  year: 2009
  end-page: 1154
  article-title: Joint modelling of multivariate longitudinal outcomes and a time‐to‐event: a nonlinear latent class approach
  publication-title: Comput Stat Data Anal
– volume: 29
  start-page: 1661
  issue: 16
  year: 2010
  end-page: 1672
  article-title: Likelihood‐based methods for estimating the association between a health outcome and left‐or interval‐censored longitudinal exposure data
  publication-title: Stat Med
– volume: 55
  start-page: 625
  issue: 2
  year: 1999
  end-page: 629
  article-title: Mixed effects models with censored data with application to HIV RNA levels
  publication-title: Biometrics
– volume: 1
  start-page: 355
  issue: 4
  year: 2000
  end-page: 368
  article-title: Analysis of left‐censored longitudinal data with application to viral load in HIV infection
  publication-title: Biostatistics
– volume: 14
  start-page: 809
  issue: 3
  year: 2004
  end-page: 834
  article-title: Joint modeling of longitudinal and time‐to‐event data: an overview
  publication-title: Stat Sinica
– ident: e_1_2_8_2_1
  doi: 10.1001/archinte.167.15.1655
– ident: e_1_2_8_4_1
  doi: 10.1177/0962280212445839
– ident: e_1_2_8_19_1
  doi: 10.1016/j.csda.2008.10.017
– ident: e_1_2_8_12_1
  doi: 10.1093/biostatistics/1.4.355
– volume: 7
  start-page: 434
  issue: 4
  year: 1998
  ident: e_1_2_8_22_1
  article-title: General methods for monitoring convergence of iterative simulations
  publication-title: J Comput Graphical Stat
  doi: 10.1080/10618600.1998.10474787
– volume-title: The EM Algorithm and Extensions
  year: 1997
  ident: e_1_2_8_28_1
– ident: e_1_2_8_13_1
  doi: 10.1002/sim.1923
– ident: e_1_2_8_7_1
  doi: 10.1289/ehp.8528
– ident: e_1_2_8_14_1
  doi: 10.1002/sim.3905
– ident: e_1_2_8_27_1
  doi: 10.1111/j.1541-0420.2009.01234.x
– ident: e_1_2_8_15_1
  doi: 10.1016/j.csda.2014.11.011
– ident: e_1_2_8_29_1
  doi: 10.1093/biostatistics/kxp009
– ident: e_1_2_8_30_1
  doi: 10.1111/biom.12232
– ident: e_1_2_8_9_1
  doi: 10.1021/es053368a
– ident: e_1_2_8_21_1
  doi: 10.18637/jss.v078.i02
– ident: e_1_2_8_24_1
  doi: 10.1037/1082-989X.8.3.338
– ident: e_1_2_8_20_1
  doi: 10.1016/j.csda.2015.05.007
– ident: e_1_2_8_6_1
  doi: 10.1080/1047322X.1990.10389587
– ident: e_1_2_8_17_1
  doi: 10.1198/016214502753479220
– ident: e_1_2_8_16_1
  doi: 10.1002/(SICI)1097-0258(20000530)19:10<1303::AID-SIM424>3.0.CO;2-E
– ident: e_1_2_8_11_1
  doi: 10.1111/1467-9876.00207
– ident: e_1_2_8_25_1
  doi: 10.1016/S0167-9473(01)00017-2
– ident: e_1_2_8_5_1
  doi: 10.1177/0049124101029003005
– volume: 14
  start-page: 809
  issue: 3
  year: 2004
  ident: e_1_2_8_3_1
  article-title: Joint modeling of longitudinal and time‐to‐event data: an overview
  publication-title: Stat Sinica
– ident: e_1_2_8_10_1
  doi: 10.1111/j.0006-341X.1999.00625.x
– ident: e_1_2_8_18_1
  doi: 10.1002/sim.2659
– ident: e_1_2_8_26_1
  doi: 10.1002/0470036486
– ident: e_1_2_8_23_1
  doi: 10.1214/aos/1176344136
– ident: e_1_2_8_8_1
  doi: 10.1289/ehp.7199
SSID ssj0011527
Score 2.2486613
Snippet Joint latent class modeling is an appealing approach for evaluating the association between a longitudinal biomarker and clinical outcome when the study...
Joint latent class modeling is an appealing approach for evaluating the association between a longitudinal biomarker and clinical outcome when the study...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2162
SubjectTerms Biomarkers
joint modeling
Latent class analysis
limit of detection (LOD)
longitudinal biomarker
Monte Carlo EM
Title Joint analysis of left‐censored longitudinal biomarker and binary outcome via latent class modeling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7642
https://www.ncbi.nlm.nih.gov/pubmed/29611202
https://www.proquest.com/docview/2047314184
https://www.proquest.com/docview/2021320579
Volume 37
WOSCitedRecordID wos000433594400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011527
  issn: 0277-6715
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD7YrZSCWN1WXXshgvg2diaTTTKPYl2s2CJqYd-GXGFhnZG99Lk_ob_RX-I5c1kpIgh9GoZJMiEnJ_lOTs53AF7ntnAWgXlidJ4mwquYFNHSiZiw0XrlpXdNsgl1eamn0-JLd6uSYmFafojNgRtpRrNek4Ibuzz9Qxq6nP14qxA9b8E2x2krBrB99nVy9XnjQ-gTtpKTUqps3FPPpvy0r3t3M_oLYd4FrM2OM9m7T1-fwOMOZ7J37cR4Cg9CNYSdi86TPoRH7Xkda8OQhrBLqLMlbd6H8KmeVStmOsISVkc2D3H16-bWodVbL4Jn85oSHa09JdViFMNP13wWWMXjG4X4snq9wm4Gdj0zbI6IFht0BNVZk3wHd8wDuJp8-P7-Y9LlY0gcgkCemMK5oEVmbFRSxWC1kZ6rmGobowoIDbyIRoZUcV4ELnMro8ycTK0uEGXl-TMYVHUVXgDLo0fwEBwuMIjHPNpVYoymW-ZyoZ32YQSvesGUP1vajbIlWOYlDmZJgzmCo15iZad4y5KnQuWZQLsVm9h8RpUhP4ipQr2mMpwCx8eqGMHzVtKbn_BCIgJNsfE3jUD_-ffy2_kFPV_-b8FD2EWwpemaWTY-gsFqsQ7H8NBdo3AXJ7Clpvqkm8K_AcfR9Oo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB_aq9SC-HG1elo1gvi27W42m2TxSdSj1btDtIW-LZsvOLjuyvWuz_4J_o3-Jc7sx0kRQfBpCZsvMpnkNzOZGYBXqcmtQWAelTqNI-FUiPJgSCMmTDBOOelsk2xCzWb64iL_vAVvel-YNj7ERuFGnNGc18TgpJA-_h019Gp-eaQQPm_DjsBdlA1g5_2X8flkY0ToM7aSlVKqJOtjz8b8uG978zb6A2LeRKzNlTO-91-TvQ93O6TJ3rZb4wFs-WoIu9POlj6EO63GjrWOSEPYI9zZhm3eB_-xnlcrVnYhS1gd2MKH1c_vPyzKvfXSO7aoKdXR2lFaLUZe_PTQZ4lNHJbIyZfV6xXO07PreckWiGmxQ0tgnTXpd_DOfAjn4w9n706iLiNDZBEG8qjMrfVaJKUJSqrgjS6l4yrE2oSgPIIDJ0Ipfaw4zz2XqZFBJlbGRueIs9L0AAZVXfnHwNLgED54i0cMIjKHkpXIUHhLbCq01c6P4GVPmeJbG3ijaEMs8wIXs6DFHMFhT7KiY72rgsdCpYlAyRW72PxGpiFLSFn5ek11OLmOZyofwaOW1JtBeC4Rg8bY-euGon8dvfh6OqXvk3-t-AJun5xNJ8XkdPbpKewh9NL06CzJDmGwWq79M7hlr5HQy-fdTv4Fpfv38g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1faxQxEB9qK6VQqp7aXq0aQXzbdjebTbL0qVgPq-1R1ELfls0_OLjulutdn_sR-hn9JM7sn5MiguDTsmySDZlM8ptM5jcA71OTW4PAPCp1GkfCqRDlwdCJmDDBOOWks02yCTUe68vL_HwFDvtYmJYfYnngRprRrNek4P7ahYPfrKE3k6t9hfD5EayJLJeolWvH30YXp0snQp-xlbyUUiVZzz0b84O-7sPd6A-I-RCxNlvO6Ml_dfYpbHVIkx21U-MZrPhqAOtnnS99AJvtiR1rA5EGsEG4s6Vtfg7-Sz2p5qzsKEtYHdjUh_nPu3uLdm89845Na0p1tHCUVotRFD9d9JlhFYdvFOTL6sUc--nZ7aRkU8S02KAlsM6a9Du4Z76Ai9GnHx8_R11GhsgiDORRmVvrtUhKE5RUwRtdSsdViLUJQXkEB06EUvpYcZ57LlMjg0ysjI3OEWel6UtYrerK7wBLg0P44C0uMYjIHFpWIkPjLbGp0FY7P4R3vWSK65Z4o2gplnmBg1nQYA5hrxdZ0aneTcFjodJEoOWKTSw_o9KQJ6SsfL2gMpxCxzOVD2G7FfXyJxynUoIFhvChkehf_158Pzmj5-6_FnwL6-fHo-L0ZPz1FWwg8tJ05yzJ9mB1Plv41_DY3qKcZ2-6ifwLPjf3bQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+analysis+of+left%E2%80%90censored+longitudinal+biomarker+and+binary+outcome+via+latent+class+modeling&rft.jtitle=Statistics+in+medicine&rft.au=Li%2C+Menghan&rft.au=Kong%2C+Lan&rft.date=2018-06-15&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=37&rft.issue=13&rft.spage=2162&rft.epage=2173&rft_id=info:doi/10.1002%2Fsim.7642&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_7642
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon