Physical constraints-based terahertz thickness measurement method of thermal barrier coating
Due to the uneven microstructure of the thermal barrier coatings (TBCs) and dispersion effect, there is a discrepancy between the measured terahertz (THz) signals and the theory, which leads to the optimization process of the model inversion method is prone to local extremes. This results in a lack...
Gespeichert in:
| Veröffentlicht in: | NDT & E international : independent nondestructive testing and evaluation Jg. 143; S. 103058 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.04.2024
|
| Schlagworte: | |
| ISSN: | 0963-8695, 1879-1174 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Due to the uneven microstructure of the thermal barrier coatings (TBCs) and dispersion effect, there is a discrepancy between the measured terahertz (THz) signals and the theory, which leads to the optimization process of the model inversion method is prone to local extremes. This results in a lack of reliability of THz thickness measurements based on model inversion. A THz inversion method based on physical constraints is proposed to measure the thickness of TBCs. In this paper, we illustrate the characteristics of the THz signal and propose a fitness function suitable for inversion of TBCs thickness. A feature comparison and adaptive mutation combined with teaching-learning-based optimization algorithm (FCAM-TLBO) is also proposed for inverting the theoretical model to extract ceramic layer thickness. The experiments show that the average relative error is less than 0.3 % for thickness measurements of TBC samples, which has better reliability than the conventional inversion methods. |
|---|---|
| AbstractList | Due to the uneven microstructure of the thermal barrier coatings (TBCs) and dispersion effect, there is a discrepancy between the measured terahertz (THz) signals and the theory, which leads to the optimization process of the model inversion method is prone to local extremes. This results in a lack of reliability of THz thickness measurements based on model inversion. A THz inversion method based on physical constraints is proposed to measure the thickness of TBCs. In this paper, we illustrate the characteristics of the THz signal and propose a fitness function suitable for inversion of TBCs thickness. A feature comparison and adaptive mutation combined with teaching-learning-based optimization algorithm (FCAM-TLBO) is also proposed for inverting the theoretical model to extract ceramic layer thickness. The experiments show that the average relative error is less than 0.3 % for thickness measurements of TBC samples, which has better reliability than the conventional inversion methods. |
| ArticleNumber | 103058 |
| Author | Fan, Mengbao Sun, Fengshan Cao, Binghua Deng, Tao Ye, Bo |
| Author_xml | – sequence: 1 givenname: Binghua surname: Cao fullname: Cao, Binghua email: caobinghua@cumt.edu.cn organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China – sequence: 2 givenname: Tao surname: Deng fullname: Deng, Tao email: d1286214737@163.com organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China – sequence: 3 givenname: Mengbao surname: Fan fullname: Fan, Mengbao email: wuzhi3495@cumt.edu.cn organization: School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, 221116, China – sequence: 4 givenname: Fengshan surname: Sun fullname: Sun, Fengshan email: TB20050013B4@cumt.edu.cn organization: School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, 221116, China – sequence: 5 givenname: Bo surname: Ye fullname: Ye, Bo email: yeripple@hotmail.com organization: Kunming University of Science and Technology, Kunming, 650500, China |
| BookMark | eNqFkM9KAzEQxoNUsK0-grAvsDXZ7G42eBAp_oOCHvQmhOxk1k3tZiWJQn16U9qTl55mmJnvx3zfjEzc6JCQS0YXjLL6ar1wJqJ1cVHQokwzTqvmhExZI2TOmCgnZEplzfOmltUZmYWwpjRdcjEl7y_9NljQmwxGF6LXCRPyVgc0WUSve_TxN4u9hU-HIWQD6vDtcUAXUx_70WRjl_boh8RotfcWfWLpaN3HOTnt9CbgxaHOydv93evyMV89Pzwtb1c5cCpj3pUgGiONBFawom2gMBppAR0aUWLb0Aagk4J3FaCgvK2FLqpaSMYF8FK3fE6u91zwYwgeOwU2pg9GtzO0UYyqXVBqrQ5BqV1Qah9UUlf_1F_eDtpvj-pu9jpM1n6SbRXAogM01iNEZUZ7hPAH0z-LLg |
| CitedBy_id | crossref_primary_10_1109_TII_2024_3400318 crossref_primary_10_1080_10589759_2024_2417846 crossref_primary_10_1109_TIM_2025_3552881 crossref_primary_10_1016_j_measurement_2025_116783 crossref_primary_10_1016_j_ymssp_2025_113018 crossref_primary_10_1080_10589759_2025_2552340 crossref_primary_10_1109_JSEN_2024_3461854 crossref_primary_10_1016_j_ymssp_2025_112430 |
| Cites_doi | 10.1016/j.ndteint.2022.102672 10.1016/j.ndteint.2015.11.001 10.1016/j.ndteint.2023.102862 10.1109/TTHZ.2014.2325393 10.1080/10589759.2023.2167991 10.1016/j.ndteint.2020.102358 10.1002/eej.22624 10.1016/j.ceramint.2021.12.368 10.1016/j.applthermaleng.2016.12.032 10.1109/TTHZ.2020.2972945 10.1109/JSEN.2019.2958674 10.1109/TMTT.2004.835916 10.1109/JSTQE.2016.2646520 10.1109/TTHZ.2020.2995821 10.1109/TMTT.2023.3242337 10.1063/1.4955407 10.1016/j.cad.2010.12.015 10.1007/s10762-022-00874-2 10.1109/TII.2022.3217829 10.1364/AO.46.007518 10.1126/science.1068609 10.1016/j.ultras.2019.105981 10.1109/LED.2022.3205754 10.1364/OE.398532 10.1364/OL.34.001927 10.1109/TII.2021.3098791 10.1016/j.crhy.2010.05.004 10.3390/coatings12091318 10.1109/TSM.2021.3065405 10.1109/TTHZ.2017.2786692 10.1016/j.ndteint.2020.102367 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ndteint.2024.103058 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-1174 |
| ExternalDocumentID | 10_1016_j_ndteint_2024_103058 S0963869524000239 |
| GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 29M 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABMYL ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K T9H WH7 WUQ XPP XSW ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c309t-f4c78d9d9c1212b8c2dae02cfed74eb808ccf973f5ce703b67a25679137c34ab3 |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001185862500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0963-8695 |
| IngestDate | Sat Nov 29 07:08:00 EST 2025 Tue Nov 18 22:33:06 EST 2025 Sat Mar 23 16:30:14 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Teaching-learning based optimization algorithm Thermal barrier coatings Terahertz non-destructive testing Theoretical model Thickness measurement |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c309t-f4c78d9d9c1212b8c2dae02cfed74eb808ccf973f5ce703b67a25679137c34ab3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ndteint_2024_103058 crossref_primary_10_1016_j_ndteint_2024_103058 elsevier_sciencedirect_doi_10_1016_j_ndteint_2024_103058 |
| PublicationCentury | 2000 |
| PublicationDate | April 2024 2024-04-00 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | NDT & E international : independent nondestructive testing and evaluation |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Sun, Fan, Cao, Zheng, Liu, Liu (bib3) 2022; 18 Liang, Liu, Chen, Wei (bib5) 2022; 48 Wang, Han, Xu, Chen, Li, Wu (bib27) 2018; 8 Krimi, Torosyan, Beigang (bib33) 2017; 23 Rao, Savsani, Vakharia (bib38) 2011; 43 Unnikrishnakurup, Dash, Ray, Pesala, Balasubramaniam (bib7) 2020; 116 Fukuchi, Fuse, Okada, Ozeki, Fujii, Mizuno (bib28) 2014; 189 Mehta, Vasudev, Singh, Prakash, Saxena, Linul (bib4) 2022; 12 Cheng, Chen, Li, Li, Tsai, Wang (bib9) 2021; 34 Ye, Wang, Zhou, Li, Fang, Huang (bib18) 2020; 10 Siegel (bib22) 2004; 52 Latha, Unnikrishnakurup, Jain, Pathra, Balasubramaniam (bib17) 2022; 43 Liu, Qi (bib25) 2023; 71 Ma, Zhang, Luo, Sun, Li, Lin (bib10) 2020; 100 Lesack, Fredeen, Jirasek, Holzman (bib15) 2020; 10 John (bib1) 2009; 326 Sun, Fan, Cao, Ye, Lu, Li (bib24) 2023; 70 Jayalakshmi, Inamdar, Anand, Kandasubramanian (bib8) 2019; 136 Han (bib23) 2023; 138 Tang, Liu, Dai, Yu (bib12) 2017; 114 Krimi, Klier, Jonuscheit, von Freymann, Urbansky, Beigang (bib30) 2016; 109 Gong, Cao, Zhang, Sun, Fan (bib6) 2023 Yang, Zhang, Liu, Li, Xu (bib34) 2021; 50 Huang, Zhu, Zhuo, Li, Liu, Hao (bib13) 2022; 130 Fukunaga, Hosako (bib21) 2010; 11 Li, Chen, Hao, Li, Wu, Li (bib11) 2022; 43 Xu, Wang, Zhang, Yan, Chen (bib16) 2021; 124 Waddie, Schemmel, Chalk, Isern, Nicholls, Moore (bib35) 2020; 28 Sun, Fan, Cao, Liu (bib36) 2023; 19 Su, Shen, Zeitler (bib29) 2014; 4 Zhai, Locquet, Roquelet, Ronqueti, Citrin (bib26) 2020; 116 . Jagannathan, Gatesman, Giles (bib37) 2009; 34 Yasuda T, Iwata T, Araki T, Yasui T. Improvement of Minimum Paint Film Thickness for THz Paint Meters by Multiple-regression Analysis. Appl Opt 200;746(30): 7518-7526. Padture, Gell, Jordan (bib2) 2002; 296 Kim, Ryu, Park, Kim (bib20) 2017; 4 Chopard, Cassar, Bou-Sleiman, Guillet, Pan, Perraud (bib19) 2021; 12 Cao, Wang, Li, Fan, Tian (bib32) 2020; 20 Mao, Lei (bib14) 2015; 78 Wang (10.1016/j.ndteint.2024.103058_bib27) 2018; 8 Cao (10.1016/j.ndteint.2024.103058_bib32) 2020; 20 10.1016/j.ndteint.2024.103058_bib31 Cheng (10.1016/j.ndteint.2024.103058_bib9) 2021; 34 Su (10.1016/j.ndteint.2024.103058_bib29) 2014; 4 Krimi (10.1016/j.ndteint.2024.103058_bib33) 2017; 23 Padture (10.1016/j.ndteint.2024.103058_bib2) 2002; 296 Siegel (10.1016/j.ndteint.2024.103058_bib22) 2004; 52 Jayalakshmi (10.1016/j.ndteint.2024.103058_bib8) 2019; 136 Krimi (10.1016/j.ndteint.2024.103058_bib30) 2016; 109 Waddie (10.1016/j.ndteint.2024.103058_bib35) 2020; 28 John (10.1016/j.ndteint.2024.103058_bib1) 2009; 326 Yang (10.1016/j.ndteint.2024.103058_bib34) 2021; 50 Mao (10.1016/j.ndteint.2024.103058_bib14) 2015; 78 Tang (10.1016/j.ndteint.2024.103058_bib12) 2017; 114 Ye (10.1016/j.ndteint.2024.103058_bib18) 2020; 10 Rao (10.1016/j.ndteint.2024.103058_bib38) 2011; 43 Sun (10.1016/j.ndteint.2024.103058_bib36) 2023; 19 Huang (10.1016/j.ndteint.2024.103058_bib13) 2022; 130 Fukuchi (10.1016/j.ndteint.2024.103058_bib28) 2014; 189 Jagannathan (10.1016/j.ndteint.2024.103058_bib37) 2009; 34 Fukunaga (10.1016/j.ndteint.2024.103058_bib21) 2010; 11 Ma (10.1016/j.ndteint.2024.103058_bib10) 2020; 100 Sun (10.1016/j.ndteint.2024.103058_bib24) 2023; 70 Zhai (10.1016/j.ndteint.2024.103058_bib26) 2020; 116 Liang (10.1016/j.ndteint.2024.103058_bib5) 2022; 48 Sun (10.1016/j.ndteint.2024.103058_bib3) 2022; 18 Mehta (10.1016/j.ndteint.2024.103058_bib4) 2022; 12 Kim (10.1016/j.ndteint.2024.103058_bib20) 2017; 4 Unnikrishnakurup (10.1016/j.ndteint.2024.103058_bib7) 2020; 116 Gong (10.1016/j.ndteint.2024.103058_bib6) 2023 Lesack (10.1016/j.ndteint.2024.103058_bib15) 2020; 10 Xu (10.1016/j.ndteint.2024.103058_bib16) 2021; 124 Li (10.1016/j.ndteint.2024.103058_bib11) 2022; 43 Han (10.1016/j.ndteint.2024.103058_bib23) 2023; 138 Latha (10.1016/j.ndteint.2024.103058_bib17) 2022; 43 Chopard (10.1016/j.ndteint.2024.103058_bib19) 2021; 12 Liu (10.1016/j.ndteint.2024.103058_bib25) 2023; 71 |
| References_xml | – volume: 116 year: 2020 ident: bib7 article-title: Nondestructive evaluation of thermal barrier coating thickness degradation using pulsed ir thermography and THz-TDS measurements: a comparative study publication-title: NDT Int – volume: 43 start-page: 582 year: 2022 end-page: 597 ident: bib17 article-title: Material characterization and thickness measurement of iron particle reinforced polyurethane multi-layer coating for aircraft stealth applications using THz-time domain spectroscopy publication-title: J Infrared Millim Waves – reference: Yasuda T, Iwata T, Araki T, Yasui T. Improvement of Minimum Paint Film Thickness for THz Paint Meters by Multiple-regression Analysis. Appl Opt 200;746(30): 7518-7526. – volume: 34 start-page: 1927 year: 2009 end-page: 1929 ident: bib37 article-title: Characterization of roughness parameters of metallic surfaces using terahertz reflection spectra publication-title: Opt Lett – volume: 8 start-page: 161 year: 2018 end-page: 164 ident: bib27 article-title: Characterization of thin metal films using terahertz spectroscopy publication-title: IEEE T THz Sci Techn – volume: 50 year: 2021 ident: bib34 article-title: Terahertz nondestructive detection of the hidden layer in multilayer medium publication-title: Acta Photonica Sin – volume: 12 start-page: 1318 year: 2022 ident: bib4 article-title: Processing and advancements in the development of thermal barrier coatings: a review publication-title: Coatings – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: bib38 article-title: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput Aided Des – volume: 20 start-page: 3162 year: 2020 end-page: 3171 ident: bib32 article-title: Noncontact thickness measurement of multilayer coatings on metallic substrate using pulsed terahertz technology publication-title: IEEE Sensor J – volume: 124 year: 2021 ident: bib16 article-title: Terahertz nondestructive quantitative characterization for layer thickness based on sparse representation method publication-title: NDT Int – volume: 4 start-page: 432 year: 2014 end-page: 439 ident: bib29 article-title: Terahertz sensor for non-contact thickness and quality measurement of automobile paints of varying complexity publication-title: IEEE T Thz Sci Techn – volume: 70 start-page: 12860 year: 2023 end-page: 12871 ident: bib24 article-title: Cross-correlation inspired residual network for pulsed eddy current imaging and detecting of subsurface defects publication-title: IEEE Trans Ind Inf – volume: 116 year: 2020 ident: bib26 article-title: Thickness characterization of multi-layer coated steel by terahertz time-of-flight tomography publication-title: NDT Int – volume: 100 year: 2020 ident: bib10 article-title: Ultrasonic characterization of thermal barrier coatings porosity through BP neural network optimizing Gaussian process regression algorithm publication-title: Ultrasonics – volume: 10 start-page: 383 year: 2020 end-page: 390 ident: bib18 article-title: Quantitative determination of porosity in thermal barrier coatings using terahertz reflectance spectrum: case study of atmospheric-plasma-sprayed YSZ coatings publication-title: IEEE T THz Sci Techn – volume: 78 start-page: 10 year: 2015 end-page: 19 ident: bib14 article-title: Thickness measurement of metal pipe using swept-frequency eddy current testing publication-title: NDT Int – volume: 48 start-page: 11435 year: 2022 end-page: 11444 ident: bib5 article-title: Effect of ceramic coating thickness on fracture behaviour of coating structure under thermal shock cycles publication-title: Ceram Int – volume: 130 year: 2022 ident: bib13 article-title: Non-destructive evaluation of uneven coating thickness based on active long pulse thermography publication-title: NDT Int – year: 2023 ident: bib6 article-title: Terahertz based thickness measurement of thermal barrier coatings using hybrid machine learning publication-title: Nondestr Test Eval – volume: 136 year: 2019 ident: bib8 article-title: Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts publication-title: JAPS – volume: 34 start-page: 161 year: 2021 end-page: 167 ident: bib9 article-title: Machine learning-based detection method for wafer test induced defects publication-title: IEEE Trans Semicond Manuf – volume: 114 start-page: 770 year: 2017 end-page: 775 ident: bib12 article-title: Theoretical and experimental study on thermal barrier coating (TBC) uneven thickness detection using pulsed infrared thermography technology publication-title: Appl Therm Eng – volume: 18 start-page: 2508 year: 2022 end-page: 2517 ident: bib3 article-title: Terahertz based thickness measurement of thermal barrier coatings using long short-term memory networks and local extrema publication-title: IEEE Trans Ind Inf – volume: 189 start-page: 1 year: 2014 end-page: 8 ident: bib28 article-title: Topcoat thickness measurement of thermal barrier coating of gas turbine blade using terahertz wave publication-title: Electr Eng Jpn – volume: 296 start-page: 5566 year: 2002 ident: bib2 article-title: Thermal barrier coatings for gas-turbine engine applications publication-title: Science – volume: 52 start-page: 2438 year: 2004 end-page: 2447 ident: bib22 article-title: Terahertz technology in biology and medicine publication-title: IEEE T Microw Theory – volume: 326 start-page: 5956 year: 2009 ident: bib1 article-title: The hotter the engine, the better publication-title: Science – volume: 12 year: 2021 ident: bib19 article-title: Terahertz waves for contactless control and imaging in aeronautics industry publication-title: NDT Int – volume: 109 year: 2016 ident: bib30 article-title: Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology publication-title: Appl Phys Lett – reference: . – volume: 28 start-page: 31535 year: 2020 end-page: 31552 ident: bib35 article-title: Terahertz optical thickness and birefringence measurement for thermal barrier coating defect location publication-title: Opt Express – volume: 43 start-page: 1997 year: 2022 end-page: 2000 ident: bib11 article-title: Direct X-ray detectors based on PDMS films with low detection limit and high flexibility publication-title: IEEE Electron Device Lett – volume: 11 start-page: 519 year: 2010 end-page: 526 ident: bib21 article-title: Innovative non-invasive analysis techniques for cultural heritage using terahertz technology publication-title: Cr Phys – volume: 23 year: 2017 ident: bib33 article-title: Advanced GPU-based terahertz approach for in-line multilayer thickness measurements publication-title: IEEE J Sel Top Quant – volume: 10 start-page: 282 year: 2020 end-page: 291 ident: bib15 article-title: A methodology for dynamic material characterizations via terahertz time-domain spectroscopy publication-title: IEEE T THz Sci Techn – volume: 138 year: 2023 ident: bib23 article-title: Inner defect detection of glass fiber reinforced polymer sandwich panel using pulsed terahertz imaging based on smoothing and derivative publication-title: NDT Int – volume: 4 start-page: 211 year: 2017 end-page: 219 ident: bib20 article-title: Nondestructive evaluation of hidden damages in glass fiber reinforced plastic by using the terahertz spectroscopy publication-title: Int J Pr Eng Man-Gt – volume: 71 start-page: 2985 year: 2023 end-page: 2995 ident: bib25 article-title: Accurate thickness measurement based on dispersion compensation via terahertz time-domain spectroscopy publication-title: IEEE T Microw Theory – volume: 19 start-page: 8328 year: 2023 end-page: 8339 ident: bib36 article-title: THzResNet: a physics-inspired two-stream residual network for thermal barrier coating thickness measurement publication-title: IEEE Trans Ind Inf – volume: 130 year: 2022 ident: 10.1016/j.ndteint.2024.103058_bib13 article-title: Non-destructive evaluation of uneven coating thickness based on active long pulse thermography publication-title: NDT Int doi: 10.1016/j.ndteint.2022.102672 – volume: 78 start-page: 10 year: 2015 ident: 10.1016/j.ndteint.2024.103058_bib14 article-title: Thickness measurement of metal pipe using swept-frequency eddy current testing publication-title: NDT Int doi: 10.1016/j.ndteint.2015.11.001 – volume: 138 year: 2023 ident: 10.1016/j.ndteint.2024.103058_bib23 article-title: Inner defect detection of glass fiber reinforced polymer sandwich panel using pulsed terahertz imaging based on smoothing and derivative publication-title: NDT Int doi: 10.1016/j.ndteint.2023.102862 – volume: 70 start-page: 12860 issue: 12 year: 2023 ident: 10.1016/j.ndteint.2024.103058_bib24 article-title: Cross-correlation inspired residual network for pulsed eddy current imaging and detecting of subsurface defects publication-title: IEEE Trans Ind Inf – volume: 4 start-page: 432 issue: 4 year: 2014 ident: 10.1016/j.ndteint.2024.103058_bib29 article-title: Terahertz sensor for non-contact thickness and quality measurement of automobile paints of varying complexity publication-title: IEEE T Thz Sci Techn doi: 10.1109/TTHZ.2014.2325393 – year: 2023 ident: 10.1016/j.ndteint.2024.103058_bib6 article-title: Terahertz based thickness measurement of thermal barrier coatings using hybrid machine learning publication-title: Nondestr Test Eval doi: 10.1080/10589759.2023.2167991 – volume: 116 year: 2020 ident: 10.1016/j.ndteint.2024.103058_bib26 article-title: Thickness characterization of multi-layer coated steel by terahertz time-of-flight tomography publication-title: NDT Int doi: 10.1016/j.ndteint.2020.102358 – volume: 189 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.ndteint.2024.103058_bib28 article-title: Topcoat thickness measurement of thermal barrier coating of gas turbine blade using terahertz wave publication-title: Electr Eng Jpn doi: 10.1002/eej.22624 – volume: 48 start-page: 11435 issue: 8 year: 2022 ident: 10.1016/j.ndteint.2024.103058_bib5 article-title: Effect of ceramic coating thickness on fracture behaviour of coating structure under thermal shock cycles publication-title: Ceram Int doi: 10.1016/j.ceramint.2021.12.368 – volume: 114 start-page: 770 year: 2017 ident: 10.1016/j.ndteint.2024.103058_bib12 article-title: Theoretical and experimental study on thermal barrier coating (TBC) uneven thickness detection using pulsed infrared thermography technology publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.12.032 – volume: 10 start-page: 282 issue: 3 year: 2020 ident: 10.1016/j.ndteint.2024.103058_bib15 article-title: A methodology for dynamic material characterizations via terahertz time-domain spectroscopy publication-title: IEEE T THz Sci Techn doi: 10.1109/TTHZ.2020.2972945 – volume: 20 start-page: 3162 issue: 6 year: 2020 ident: 10.1016/j.ndteint.2024.103058_bib32 article-title: Noncontact thickness measurement of multilayer coatings on metallic substrate using pulsed terahertz technology publication-title: IEEE Sensor J doi: 10.1109/JSEN.2019.2958674 – volume: 12 year: 2021 ident: 10.1016/j.ndteint.2024.103058_bib19 article-title: Terahertz waves for contactless control and imaging in aeronautics industry publication-title: NDT Int – volume: 52 start-page: 2438 issue: 10 year: 2004 ident: 10.1016/j.ndteint.2024.103058_bib22 article-title: Terahertz technology in biology and medicine publication-title: IEEE T Microw Theory doi: 10.1109/TMTT.2004.835916 – volume: 23 issue: 4 year: 2017 ident: 10.1016/j.ndteint.2024.103058_bib33 article-title: Advanced GPU-based terahertz approach for in-line multilayer thickness measurements publication-title: IEEE J Sel Top Quant doi: 10.1109/JSTQE.2016.2646520 – volume: 10 start-page: 383 issue: 4 year: 2020 ident: 10.1016/j.ndteint.2024.103058_bib18 article-title: Quantitative determination of porosity in thermal barrier coatings using terahertz reflectance spectrum: case study of atmospheric-plasma-sprayed YSZ coatings publication-title: IEEE T THz Sci Techn doi: 10.1109/TTHZ.2020.2995821 – volume: 71 start-page: 2985 issue: 7 year: 2023 ident: 10.1016/j.ndteint.2024.103058_bib25 article-title: Accurate thickness measurement based on dispersion compensation via terahertz time-domain spectroscopy publication-title: IEEE T Microw Theory doi: 10.1109/TMTT.2023.3242337 – volume: 109 issue: 2 year: 2016 ident: 10.1016/j.ndteint.2024.103058_bib30 article-title: Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology publication-title: Appl Phys Lett doi: 10.1063/1.4955407 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 10.1016/j.ndteint.2024.103058_bib38 article-title: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Comput Aided Des doi: 10.1016/j.cad.2010.12.015 – volume: 326 start-page: 5956 year: 2009 ident: 10.1016/j.ndteint.2024.103058_bib1 article-title: The hotter the engine, the better publication-title: Science – volume: 43 start-page: 582 issue: 7–8 year: 2022 ident: 10.1016/j.ndteint.2024.103058_bib17 article-title: Material characterization and thickness measurement of iron particle reinforced polyurethane multi-layer coating for aircraft stealth applications using THz-time domain spectroscopy publication-title: J Infrared Millim Waves doi: 10.1007/s10762-022-00874-2 – volume: 124 issue: 12 year: 2021 ident: 10.1016/j.ndteint.2024.103058_bib16 article-title: Terahertz nondestructive quantitative characterization for layer thickness based on sparse representation method publication-title: NDT Int – volume: 19 start-page: 8328 issue: 7 year: 2023 ident: 10.1016/j.ndteint.2024.103058_bib36 article-title: THzResNet: a physics-inspired two-stream residual network for thermal barrier coating thickness measurement publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2022.3217829 – ident: 10.1016/j.ndteint.2024.103058_bib31 doi: 10.1364/AO.46.007518 – volume: 296 start-page: 5566 year: 2002 ident: 10.1016/j.ndteint.2024.103058_bib2 article-title: Thermal barrier coatings for gas-turbine engine applications publication-title: Science doi: 10.1126/science.1068609 – volume: 100 year: 2020 ident: 10.1016/j.ndteint.2024.103058_bib10 article-title: Ultrasonic characterization of thermal barrier coatings porosity through BP neural network optimizing Gaussian process regression algorithm publication-title: Ultrasonics doi: 10.1016/j.ultras.2019.105981 – volume: 43 start-page: 1997 issue: 11 year: 2022 ident: 10.1016/j.ndteint.2024.103058_bib11 article-title: Direct X-ray detectors based on PDMS films with low detection limit and high flexibility publication-title: IEEE Electron Device Lett doi: 10.1109/LED.2022.3205754 – volume: 28 start-page: 31535 issue: 21 year: 2020 ident: 10.1016/j.ndteint.2024.103058_bib35 article-title: Terahertz optical thickness and birefringence measurement for thermal barrier coating defect location publication-title: Opt Express doi: 10.1364/OE.398532 – volume: 34 start-page: 1927 issue: 13 year: 2009 ident: 10.1016/j.ndteint.2024.103058_bib37 article-title: Characterization of roughness parameters of metallic surfaces using terahertz reflection spectra publication-title: Opt Lett doi: 10.1364/OL.34.001927 – volume: 136 issue: 14 year: 2019 ident: 10.1016/j.ndteint.2024.103058_bib8 article-title: Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts publication-title: JAPS – volume: 4 start-page: 211 issue: 2 year: 2017 ident: 10.1016/j.ndteint.2024.103058_bib20 article-title: Nondestructive evaluation of hidden damages in glass fiber reinforced plastic by using the terahertz spectroscopy publication-title: Int J Pr Eng Man-Gt – volume: 18 start-page: 2508 issue: 4 year: 2022 ident: 10.1016/j.ndteint.2024.103058_bib3 article-title: Terahertz based thickness measurement of thermal barrier coatings using long short-term memory networks and local extrema publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2021.3098791 – volume: 11 start-page: 519 issue: 7–8 year: 2010 ident: 10.1016/j.ndteint.2024.103058_bib21 article-title: Innovative non-invasive analysis techniques for cultural heritage using terahertz technology publication-title: Cr Phys doi: 10.1016/j.crhy.2010.05.004 – volume: 12 start-page: 1318 issue: 9 year: 2022 ident: 10.1016/j.ndteint.2024.103058_bib4 article-title: Processing and advancements in the development of thermal barrier coatings: a review publication-title: Coatings doi: 10.3390/coatings12091318 – volume: 34 start-page: 161 issue: 2 year: 2021 ident: 10.1016/j.ndteint.2024.103058_bib9 article-title: Machine learning-based detection method for wafer test induced defects publication-title: IEEE Trans Semicond Manuf doi: 10.1109/TSM.2021.3065405 – volume: 8 start-page: 161 issue: 2 year: 2018 ident: 10.1016/j.ndteint.2024.103058_bib27 article-title: Characterization of thin metal films using terahertz spectroscopy publication-title: IEEE T THz Sci Techn doi: 10.1109/TTHZ.2017.2786692 – volume: 50 issue: 3 year: 2021 ident: 10.1016/j.ndteint.2024.103058_bib34 article-title: Terahertz nondestructive detection of the hidden layer in multilayer medium publication-title: Acta Photonica Sin – volume: 116 year: 2020 ident: 10.1016/j.ndteint.2024.103058_bib7 article-title: Nondestructive evaluation of thermal barrier coating thickness degradation using pulsed ir thermography and THz-TDS measurements: a comparative study publication-title: NDT Int doi: 10.1016/j.ndteint.2020.102367 |
| SSID | ssj0002437 |
| Score | 2.4556744 |
| Snippet | Due to the uneven microstructure of the thermal barrier coatings (TBCs) and dispersion effect, there is a discrepancy between the measured terahertz (THz)... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103058 |
| SubjectTerms | Teaching-learning based optimization algorithm Terahertz non-destructive testing Theoretical model Thermal barrier coatings Thickness measurement |
| Title | Physical constraints-based terahertz thickness measurement method of thermal barrier coating |
| URI | https://dx.doi.org/10.1016/j.ndteint.2024.103058 |
| Volume | 143 |
| WOSCitedRecordID | wos001185862500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1174 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002437 issn: 0963-8695 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOiE8xvuQDtyqli53YPg5WBByqSRSpB6TIn9pGaac1qyb-J_5HnmPHCWwa7MAliazYcf1-8Xt5fe_3EHpNCm6LohRZyWiZUbABMsGNypwruaGEwLtpmmITbDbji4U4HAx-trkw2yVbrfjFhTj9r6KGNhC2T529gbjToNAA1yB0OILY4fhPgj9sV157089XgKg3mVdWZuSzjUFG9Y-Rj3L_1uxy3zsnYSwnHcMGYMdejpQ8a0ra6bWsWyUXTdnZwbzBzbShnOi8it7HcJyK69aj1RrOkaZ2a2EOm7pNjOyoxru_QhrX7Vu44-g8aYwDG3akuVwnvAXHrQ_KVV3r5_NgjUPr5ijiPro08n4kTPRNliTjZai-mbZpSnobra-OFjjfL-mA4I44Gft0CFiAsX_CuLv_d87tP3RhilBsg99OqjhM5YepwjC30E7OCsGHaGf_43TxKal-z-7YkDvG-XcpY2-unM_VxlDPwJnfR_filwneD4h6gAZ29RDd7fFVPkJfW2zhS9jCCVs4YQv3sIUDtvDa4YgtHLGFI7Yeoy_vp_N3H7JYniPTZCLqzFHNuBFG6D2wfxTXuZF2kmtnDaNW8QnX2glGXKEt6BVVMgn2NRN7hGlCpSJP0BAgaJ8ibMpCKUWk0janmjglJHz4Os-UJAutJruItutU6chd73_ksrpWTrtonLqdBvKWv3XgrRCqaIEGy7ICcF3f9dlNn_Uc3emw_wIN4T20L9Ftva2PN2evIrJ-ARnXsBk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physical+constraints-based+terahertz+thickness+measurement+method+of+thermal+barrier+coating&rft.jtitle=NDT+%26+E+international+%3A+independent+nondestructive+testing+and+evaluation&rft.au=Cao%2C+Binghua&rft.au=Deng%2C+Tao&rft.au=Fan%2C+Mengbao&rft.au=Sun%2C+Fengshan&rft.date=2024-04-01&rft.issn=0963-8695&rft.volume=143&rft.spage=103058&rft_id=info:doi/10.1016%2Fj.ndteint.2024.103058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ndteint_2024_103058 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-8695&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-8695&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-8695&client=summon |