Sleep assessment by means of a wrist actigraphy-based algorithm: agreement with polysomnography in an ambulatory study on older adults

The purpose of the present work is to examine, on a clinically diverse population of older adults (N = 46) sleeping at home, the performance of two actigraphy-based sleep tracking algorithms (i.e., Actigraphy-based Sleep algorithm, ACT-S1 and Sadeh's algorithm) compared to manually scored elect...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chronobiology international Ročník 38; číslo 3; s. 400 - 414
Hlavní autoři: Regalia, Giulia, Gerboni, Giulia, Migliorini, Matteo, Lai, Matteo, Pham, Jonathan, Puri, Nirajan, Pavlova, Milena K., Picard, Rosalind W., Sarkis, Rani A., Onorati, Francesco
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 04.03.2021
Témata:
ISSN:0742-0528, 1525-6073, 1525-6073
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The purpose of the present work is to examine, on a clinically diverse population of older adults (N = 46) sleeping at home, the performance of two actigraphy-based sleep tracking algorithms (i.e., Actigraphy-based Sleep algorithm, ACT-S1 and Sadeh's algorithm) compared to manually scored electroencephalography-based PSG (PSG-EEG). ACT-S1 allows for a fully automatic identification of sleep period time (SPT) and within the identified sleep period, the sleep-wake classification. SPT detected by ACT-S1 did not differ statistically from using PSG-EEG (bias = -9.98 min; correlation 0.89). In sleep-wake classification on 30-s epochs within the identified sleep period, the new ACT-S1 presented similar or slightly higher accuracy (83-87%), precision (86-89%) and F1 score (90-92%), significantly higher specificity (39-40%), and significantly lower, but still high, sensitivity (96-97%) compared to Sadeh's algorithm, which achieved 99% sensitivity as the only measure better than ACT-S1's. Total sleep times (TST) estimated with ACT-S1 and Sadeh's algorithm were higher, but still highly correlated to PSG-EEG's TST. Sleep quality metrics of sleep period efficiency and wake-after-sleep-onset computed by ACT-S1 were not significantly different from PSG-EEG, while the same sleep quality metrics derived by Sadeh's algorithm differed significantly from PSG-EEG. Agreement between ACT-S1 and PSG-EEG reached was highest when analyzing the subset of subjects with least disrupted sleep (N = 28). These results provide evidence of promising performance of a full-automation of the sleep tracking procedure with ACT-S1 on older adults. Future longitudinal validations across specific medical conditions are needed. The algorithm's performance may further improve with integrating multi-sensor information.
AbstractList The purpose of the present work is to examine, on a clinically diverse population of older adults (N = 46) sleeping at home, the performance of two actigraphy-based sleep tracking algorithms (i.e., Actigraphy-based Sleep algorithm, ACT-S1 and Sadeh's algorithm) compared to manually scored electroencephalography-based PSG (PSG-EEG). ACT-S1 allows for a fully automatic identification of sleep period time (SPT) and within the identified sleep period, the sleep-wake classification. SPT detected by ACT-S1 did not differ statistically from using PSG-EEG (bias = -9.98 min; correlation 0.89). In sleep-wake classification on 30-s epochs within the identified sleep period, the new ACT-S1 presented similar or slightly higher accuracy (83-87%), precision (86-89%) and F1 score (90-92%), significantly higher specificity (39-40%), and significantly lower, but still high, sensitivity (96-97%) compared to Sadeh's algorithm, which achieved 99% sensitivity as the only measure better than ACT-S1's. Total sleep times (TST) estimated with ACT-S1 and Sadeh's algorithm were higher, but still highly correlated to PSG-EEG's TST. Sleep quality metrics of sleep period efficiency and wake-after-sleep-onset computed by ACT-S1 were not significantly different from PSG-EEG, while the same sleep quality metrics derived by Sadeh's algorithm differed significantly from PSG-EEG. Agreement between ACT-S1 and PSG-EEG reached was highest when analyzing the subset of subjects with least disrupted sleep (N = 28). These results provide evidence of promising performance of a full-automation of the sleep tracking procedure with ACT-S1 on older adults. Future longitudinal validations across specific medical conditions are needed. The algorithm's performance may further improve with integrating multi-sensor information.The purpose of the present work is to examine, on a clinically diverse population of older adults (N = 46) sleeping at home, the performance of two actigraphy-based sleep tracking algorithms (i.e., Actigraphy-based Sleep algorithm, ACT-S1 and Sadeh's algorithm) compared to manually scored electroencephalography-based PSG (PSG-EEG). ACT-S1 allows for a fully automatic identification of sleep period time (SPT) and within the identified sleep period, the sleep-wake classification. SPT detected by ACT-S1 did not differ statistically from using PSG-EEG (bias = -9.98 min; correlation 0.89). In sleep-wake classification on 30-s epochs within the identified sleep period, the new ACT-S1 presented similar or slightly higher accuracy (83-87%), precision (86-89%) and F1 score (90-92%), significantly higher specificity (39-40%), and significantly lower, but still high, sensitivity (96-97%) compared to Sadeh's algorithm, which achieved 99% sensitivity as the only measure better than ACT-S1's. Total sleep times (TST) estimated with ACT-S1 and Sadeh's algorithm were higher, but still highly correlated to PSG-EEG's TST. Sleep quality metrics of sleep period efficiency and wake-after-sleep-onset computed by ACT-S1 were not significantly different from PSG-EEG, while the same sleep quality metrics derived by Sadeh's algorithm differed significantly from PSG-EEG. Agreement between ACT-S1 and PSG-EEG reached was highest when analyzing the subset of subjects with least disrupted sleep (N = 28). These results provide evidence of promising performance of a full-automation of the sleep tracking procedure with ACT-S1 on older adults. Future longitudinal validations across specific medical conditions are needed. The algorithm's performance may further improve with integrating multi-sensor information.
The purpose of the present work is to examine, on a clinically diverse population of older adults (N = 46) sleeping at home, the performance of two actigraphy-based sleep tracking algorithms (i.e., Actigraphy-based Sleep algorithm, ACT-S1 and Sadeh's algorithm) compared to manually scored electroencephalography-based PSG (PSG-EEG). ACT-S1 allows for a fully automatic identification of sleep period time (SPT) and within the identified sleep period, the sleep-wake classification. SPT detected by ACT-S1 did not differ statistically from using PSG-EEG (bias = -9.98 min; correlation 0.89). In sleep-wake classification on 30-s epochs within the identified sleep period, the new ACT-S1 presented similar or slightly higher accuracy (83-87%), precision (86-89%) and F1 score (90-92%), significantly higher specificity (39-40%), and significantly lower, but still high, sensitivity (96-97%) compared to Sadeh's algorithm, which achieved 99% sensitivity as the only measure better than ACT-S1's. Total sleep times (TST) estimated with ACT-S1 and Sadeh's algorithm were higher, but still highly correlated to PSG-EEG's TST. Sleep quality metrics of sleep period efficiency and wake-after-sleep-onset computed by ACT-S1 were not significantly different from PSG-EEG, while the same sleep quality metrics derived by Sadeh's algorithm differed significantly from PSG-EEG. Agreement between ACT-S1 and PSG-EEG reached was highest when analyzing the subset of subjects with least disrupted sleep (N = 28). These results provide evidence of promising performance of a full-automation of the sleep tracking procedure with ACT-S1 on older adults. Future longitudinal validations across specific medical conditions are needed. The algorithm's performance may further improve with integrating multi-sensor information.
Author Gerboni, Giulia
Pham, Jonathan
Picard, Rosalind W.
Sarkis, Rani A.
Puri, Nirajan
Onorati, Francesco
Regalia, Giulia
Pavlova, Milena K.
Migliorini, Matteo
Lai, Matteo
Author_xml – sequence: 1
  givenname: Giulia
  surname: Regalia
  fullname: Regalia, Giulia
  organization: Empatica, Inc., Cambridge, Massachusetts, USA
– sequence: 2
  givenname: Giulia
  orcidid: 0000-0002-0741-2732
  surname: Gerboni
  fullname: Gerboni, Giulia
  organization: Empatica, Inc., Cambridge, Massachusetts, USA
– sequence: 3
  givenname: Matteo
  surname: Migliorini
  fullname: Migliorini, Matteo
  organization: Empatica, Inc., Cambridge, Massachusetts, USA
– sequence: 4
  givenname: Matteo
  surname: Lai
  fullname: Lai, Matteo
  organization: Empatica, Inc., Cambridge, Massachusetts, USA
– sequence: 5
  givenname: Jonathan
  surname: Pham
  fullname: Pham, Jonathan
  organization: Department of Neurology, Edward B. Bromfield Epilepsy Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
– sequence: 6
  givenname: Nirajan
  surname: Puri
  fullname: Puri, Nirajan
  organization: Department of Neurology, Edward B. Bromfield Epilepsy Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
– sequence: 7
  givenname: Milena K.
  surname: Pavlova
  fullname: Pavlova, Milena K.
  organization: Department of Neurology, Edward B. Bromfield Epilepsy Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
– sequence: 8
  givenname: Rosalind W.
  surname: Picard
  fullname: Picard, Rosalind W.
  organization: Empatica, Inc., Cambridge, Massachusetts, USA, MIT Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
– sequence: 9
  givenname: Rani A.
  surname: Sarkis
  fullname: Sarkis, Rani A.
  organization: Department of Neurology, Edward B. Bromfield Epilepsy Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
– sequence: 10
  givenname: Francesco
  surname: Onorati
  fullname: Onorati, Francesco
  organization: Empatica, Inc., Cambridge, Massachusetts, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33213222$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1TAQhq2qqD0tPALISzYpvuQKK1QBrVSpC2AdOfb41Mixg8dRlRfguZtwTlmwqTTSSL--bxbzX5DTEAMQ8pazK85a9oE1pWCVaK8EE2vUyqorxQnZ8UpURc0aeUp2G1Ns0Dm5QPzF2CrW8oycSym4FELsyJ_vHmCiChEQRwiZDgsdQQWk0VJFH5PDTJXObp_U9LAUg0IwVPl9TC4_jB-p2ieAv-bjGtAp-gXjGOKBpy5Qtc44zF7lmBaKeTYLjYFGbyBRZWaf8TV5ZZVHeHPcl-Tn1y8_rm-Ku_tvt9ef7wotWZcLri00phwa09Wg61IPzQCiMlYbK7pOcmtZ09YSWm607jRvWKdbybRVQ7WC8pK8P9ydUvw9A-Z-dKjBexUgztiLspac86be0HdHdB5GMP2U3KjS0j__bgWqA6BTRExg_yGc9VtH_XNH_dZRf-xo9T7952mXVXYx5KScf8F-AspWmRo
CitedBy_id crossref_primary_10_1177_20552076241269555
crossref_primary_10_2196_36377
crossref_primary_10_1016_j_sleh_2023_07_001
crossref_primary_10_1093_sleep_zsad325
crossref_primary_10_1080_07420528_2023_2188096
crossref_primary_10_3389_fendo_2023_1068045
crossref_primary_10_3389_fneur_2021_724904
crossref_primary_10_3390_jcm14072265
crossref_primary_10_1038_s41746_024_01016_9
crossref_primary_10_3389_fpsyt_2025_1574864
crossref_primary_10_1093_sleep_zsaf122
crossref_primary_10_1038_s41398_021_01730_y
Cites_doi 10.1016/j.psychres.2012.07.045
10.5664/jcsm.26796
10.2196/16273
10.1371/journal.pone.0194461
10.1093/sleep/5.4.389
10.5664/jcsm.2482
10.1093/sleep/zsy220
10.1016/j.jsmc.2016.10.008
10.1016/j.clinph.2016.05.275
10.1016/j.sleep.2008.07.009
10.1037/0882-7974.4.3.290
10.1093/sleep/29.10.1353
10.1053/smrv.2001.0245
10.1378/chest.10-1872
10.1093/sleep/26.3.342
10.1007/s12652-017-0477-5
10.1080/07420528.2019.1682006
10.1017/S0033291718001113
10.2196/jmir.9410
10.5664/jcsm.7228
10.1111/jsr.12926
10.1109/JBHI.2018.2867619
10.3389/fphys.2017.01100
10.1093/sleep/zsx097
10.2147/NSS.S114969
10.1080/07420528.2017.1413578
10.5664/jcsm.7176
10.1109/JBHI.2015.2490480
10.1080/15402002.2017.1300587
10.1038/s41746-019-0126-9
10.1093/sleep/26.1.81
10.2307/2529310
10.2147/NSS.S151085
10.1016/j.smrv.2019.05.001
10.2217/pme-2018-0044
10.1093/sleep/30.11.1445
10.1038/nature04286
10.1016/j.aap.2015.05.009
10.1111/j.1365-2869.2010.00857.x
10.1016/j.smrv.2016.02.001
10.1093/sleep/30.10.1362
10.1093/sleep/17.3.201
10.1038/s41598-019-49703-y
10.1016/j.smrv.2017.12.002
10.5664/jcsm.6576
10.1016/S1389-9457(00)00098-8
10.1093/sleep/28.4.499
10.1093/sleep/31.2.283
10.1093/sleep/zsz180
10.1016/j.pcad.2008.10.003
10.5664/jcsm.26508
10.3109/07420528.2010.516381
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1080/07420528.2020.1835942
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1525-6073
EndPage 414
ExternalDocumentID 33213222
10_1080_07420528_2020_1835942
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
00X
03L
0BK
0R~
29B
30N
36B
4.4
53G
5GY
5RE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAPXX
AAQRR
AAYXX
ABCCY
ABFIM
ABIVO
ABJNI
ABLIJ
ABLKL
ABPAQ
ABXUL
ABXYU
ACGEJ
ACGFS
ACKOT
ACTIO
ADCVX
ADGTB
ADRBQ
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AHDZW
AIJEM
AIYEW
AIZAD
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AWYRJ
BABNJ
BLEHA
CCCUG
CITATION
CS3
DGEBU
DKSSO
DU5
EBS
EMOBN
F5P
H13
HZ~
KRBQP
KWAYT
KYCEM
LJTGL
M4Z
O9-
P2P
RNANH
ROSJB
RTWRZ
TASJS
TBQAZ
TDBHL
TFDNU
TFL
TFT
TFW
TQWBC
TTHFI
TUROJ
V1S
ZGOLN
~02
~1N
.GJ
0VX
5VS
AAAVZ
AAGME
AALIY
AAOAP
ABFMO
ABTAA
ACBBU
ACDHJ
ACQMU
ACZPZ
ADGTR
ADOPC
ADYSH
AFDYB
APNXG
AURDB
BFWEY
CAG
CGR
COF
CUY
CVF
CWRZV
ECM
EIF
EJD
FA8
HGUVV
IPNFZ
JEPSP
M44
NPM
NUSFT
OWHGL
PCLFJ
RIG
UAP
XJT
YHZ
ZXP
7X8
AQTUD
ID FETCH-LOGICAL-c309t-1cfe7d4b7d96ec64cb7be25dfcdf29931ff07863e81dcc9c1709c830cfab5e253
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000590634500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0742-0528
1525-6073
IngestDate Sun Nov 09 10:23:58 EST 2025
Thu Apr 03 06:53:34 EDT 2025
Sat Nov 29 02:38:59 EST 2025
Tue Nov 18 21:01:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords older adults
sleep detection
Actigraphy-based sleep tracking algorithms
wearables
polysomnography
sleep quality
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c309t-1cfe7d4b7d96ec64cb7be25dfcdf29931ff07863e81dcc9c1709c830cfab5e253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0741-2732
PMID 33213222
PQID 2463111765
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2463111765
pubmed_primary_33213222
crossref_primary_10_1080_07420528_2020_1835942
crossref_citationtrail_10_1080_07420528_2020_1835942
PublicationCentury 2000
PublicationDate 2021-03-04
PublicationDateYYYYMMDD 2021-03-04
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chronobiology international
PublicationTitleAlternate Chronobiol Int
PublicationYear 2021
References Walch O (cit0063) 2019; 42
Blood MA (cit0005) 1997; 20
cit0034
Meltzer LJ (cit0036) 2012; 35
cit0032
cit0030
Radha M (cit0048) 2019; 9
Lee J-M (cit0031) 2018; 15
Shrivastava D (cit0054) 2014; 4
Zhang L (cit0066) 2019; 42
Grandner M (cit0022) 2018; 14
Deutsch PA (cit0019) 2006; 2
Chow CM (cit0010) 2016; 8
Cole RJ (cit0011) 1992; 15
cit0039
cit0037
cit0038
cit0035
cit0023
cit0020
Sadeh A (cit0049) 2011; 15
Watson NF (cit0064) 2015; 38
cit0061
O’Donnell J (cit0042) 2017
Li X (cit0033) 2020
van Hees VT (cit0062) 2018
Ho KM (cit0026) 2018; 2
Fonseca P (cit0021) 2017; 40
Newell J (cit0041) 2012; 200
cit0028
cit0029
cit0027
cit0024
Pan J (cit0044) 1985; 32
cit0055
cit0012
cit0056
Sano A (cit0051) 2019; 23
cit0052
Webster JB (cit0065) 1982; 5
cit0050
Herzig D (cit0025) 2018; 8
Sarkis RA (cit0053) 2016; 127
Tracy DJ (cit0060) 2014; 9
cit0017
cit0018
cit0015
cit0016
cit0057
cit0014
cit0058
cit0001
cit0045
Taibi DM (cit0059) 2013; 9
cit0040
Danzig R (cit0013) 2020; 29
cit0008
cit0009
cit0006
cit0007
Palotti J (cit0043) 2019; 2
cit0004
cit0002
cit0046
cit0003
cit0047
35333133 - Chronobiol Int. 2022 Mar 25;:1
References_xml – volume: 200
  start-page: 795
  issue: 2
  year: 2012
  ident: cit0041
  publication-title: Psychiatry Res.
  doi: 10.1016/j.psychres.2012.07.045
– ident: cit0007
  doi: 10.5664/jcsm.26796
– ident: cit0023
  doi: 10.2196/16273
– ident: cit0061
  doi: 10.1371/journal.pone.0194461
– volume: 5
  start-page: 389
  issue: 4
  year: 1982
  ident: cit0065
  publication-title: Sleep.
  doi: 10.1093/sleep/5.4.389
– volume: 9
  start-page: 217
  issue: 3
  year: 2013
  ident: cit0059
  publication-title: J Clin Sleep Med.
  doi: 10.5664/jcsm.2482
– volume: 42
  start-page: 11
  year: 2019
  ident: cit0066
  publication-title: Sleep.
  doi: 10.1093/sleep/zsy220
– ident: cit0037
  doi: 10.1016/j.jsmc.2016.10.008
– volume: 127
  start-page: 2785
  issue: 8
  year: 2016
  ident: cit0053
  publication-title: Clin Neurophysiol Off J Int Fed Clin Neurophysiol.
  doi: 10.1016/j.clinph.2016.05.275
– ident: cit0008
  doi: 10.1016/j.sleep.2008.07.009
– volume: 2
  start-page: 68
  issue: 2
  year: 2018
  ident: cit0026
  publication-title: J Emerg Crit Care Med.
– ident: cit0039
  doi: 10.1037/0882-7974.4.3.290
– volume: 15
  start-page: 6
  year: 2018
  ident: cit0031
  publication-title: Int J Environ Res Public Health.
– ident: cit0055
  doi: 10.1093/sleep/29.10.1353
– ident: cit0006
  doi: 10.1053/smrv.2001.0245
– ident: cit0034
  doi: 10.1378/chest.10-1872
– ident: cit0001
  doi: 10.1093/sleep/26.3.342
– ident: cit0015
  doi: 10.1007/s12652-017-0477-5
– ident: cit0024
  doi: 10.1080/07420528.2019.1682006
– ident: cit0009
  doi: 10.1017/S0033291718001113
– ident: cit0052
  doi: 10.2196/jmir.9410
– start-page: 8
  year: 2018
  ident: cit0062
  publication-title: Sci Rep.
– ident: cit0035
– volume: 20
  start-page: 388
  year: 1997
  ident: cit0005
  publication-title: Sleep
– ident: cit0056
  doi: 10.5664/jcsm.7228
– volume: 29
  start-page: e12926
  issue: 1
  year: 2020
  ident: cit0013
  publication-title: J Sleep Res.
  doi: 10.1111/jsr.12926
– volume: 23
  start-page: 1607
  issue: 4
  year: 2019
  ident: cit0051
  publication-title: IEEE J Biomed Health Inform.
  doi: 10.1109/JBHI.2018.2867619
– volume: 15
  start-page: 461
  issue: 5
  year: 1992
  ident: cit0011
  publication-title: Cole RJ.
– volume: 8
  start-page: 1100
  year: 2018
  ident: cit0025
  publication-title: Front Physiol.
  doi: 10.3389/fphys.2017.01100
– volume: 40
  issue: 7
  year: 2017
  ident: cit0021
  publication-title: Sleep
  doi: 10.1093/sleep/zsx097
– start-page: 1
  year: 2020
  ident: cit0033
  publication-title: Chronobiol Int.
– volume: 8
  start-page: 321
  year: 2016
  ident: cit0010
  publication-title: Nat Sci Sleep.
  doi: 10.2147/NSS.S114969
– ident: cit0017
  doi: 10.1080/07420528.2017.1413578
– volume: 14
  start-page: 1031
  issue: 6
  year: 2018
  ident: cit0022
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.7176
– ident: cit0027
  doi: 10.1109/JBHI.2015.2490480
– volume: 35
  start-page: 159
  issue: 1
  year: 2012
  ident: cit0036
  publication-title: Sleep.
– ident: cit0018
  doi: 10.1080/15402002.2017.1300587
– volume: 2
  start-page: 50
  issue: 1
  year: 2019
  ident: cit0043
  publication-title: Npj Digit Med.
  doi: 10.1038/s41746-019-0126-9
– volume: 38
  start-page: 843
  issue: 6
  year: 2015
  ident: cit0064
  publication-title: Sleep.
– ident: cit0016
  doi: 10.1093/sleep/26.1.81
– ident: cit0030
  doi: 10.2307/2529310
– ident: cit0047
  doi: 10.2147/NSS.S151085
– ident: cit0012
  doi: 10.1016/j.smrv.2019.05.001
– ident: cit0020
  doi: 10.2217/pme-2018-0044
– ident: cit0038
  doi: 10.1093/sleep/30.11.1445
– ident: cit0058
  doi: 10.1038/nature04286
– volume: 9
  start-page: 4
  year: 2014
  ident: cit0060
  publication-title: PLoS ONE.
– ident: cit0014
  doi: 10.1016/j.aap.2015.05.009
– ident: cit0057
  doi: 10.1111/j.1365-2869.2010.00857.x
– ident: cit0032
  doi: 10.1016/j.smrv.2016.02.001
– ident: cit0045
  doi: 10.1093/sleep/30.10.1362
– volume: 4
  start-page: 5
  year: 2014
  ident: cit0054
  publication-title: J Community Hosp Intern Med Perspect.
– ident: cit0050
  doi: 10.1093/sleep/17.3.201
– volume: 9
  start-page: 14149
  issue: 1
  year: 2019
  ident: cit0048
  publication-title: Sci Rep.
  doi: 10.1038/s41598-019-49703-y
– ident: cit0002
  doi: 10.1016/j.smrv.2017.12.002
– ident: cit0003
  doi: 10.5664/jcsm.6576
– ident: cit0028
  doi: 10.1016/S1389-9457(00)00098-8
– ident: cit0029
  doi: 10.1093/sleep/28.4.499
– ident: cit0004
  doi: 10.1093/sleep/31.2.283
– volume: 42
  start-page: 19
  issue: 12
  year: 2019
  ident: cit0063
  publication-title: Sleep.
  doi: 10.1093/sleep/zsz180
– volume: 15
  start-page: 31
  year: 2011
  ident: cit0049
  publication-title: Sleep Med Rev.
– ident: cit0040
  doi: 10.1016/j.pcad.2008.10.003
– volume: 32
  start-page: 1396
  year: 1985
  ident: cit0044
  publication-title: IEEE Trans Biomed Eng.
– start-page: 225516
  year: 2017
  ident: cit0042
  publication-title: bioRxiv.
– volume: 2
  start-page: 9
  issue: 2
  year: 2006
  ident: cit0019
  publication-title: J Clin Sleep Med.
  doi: 10.5664/jcsm.26508
– ident: cit0046
  doi: 10.3109/07420528.2010.516381
– reference: 35333133 - Chronobiol Int. 2022 Mar 25;:1
SSID ssj0008063
Score 2.389358
Snippet The purpose of the present work is to examine, on a clinically diverse population of older adults (N = 46) sleeping at home, the performance of two...
The purpose of the present work is to examine, on a clinically diverse population of older adults (N = 46) sleeping at home, the performance of two...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 400
SubjectTerms Actigraphy
Aged
Algorithms
Circadian Rhythm
Humans
Polysomnography
Reproducibility of Results
Sleep
Wrist
Title Sleep assessment by means of a wrist actigraphy-based algorithm: agreement with polysomnography in an ambulatory study on older adults
URI https://www.ncbi.nlm.nih.gov/pubmed/33213222
https://www.proquest.com/docview/2463111765
Volume 38
WOSCitedRecordID wos000590634500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis
  customDbUrl:
  eissn: 1525-6073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008063
  issn: 0742-0528
  databaseCode: TFW
  dateStart: 19840101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2cREvCMatXCYjIV6qTLk75g2hdTx0BYlO9C1yHLuLlCalTcf6B_hR_DqOL8m6MsR4QKqiyq6TyufL8fE5x99B6I3kMWM0CZwwo8IJCckdJiPuRFngRZKEVFKmi02Q0SiZTOjnnZ2f7VmY85JUVXJxQef_VdTQBsJWR2f_QdzdTaEBvoPQ4Qpih-uNBP-lFGLeZx3jpjIwZ4KZdDfW_67eak2hYbiqHbWO5X1WTutF0Zxpvz2DTbh2Gxo37bwu18t6Vll2a-UiAa3AZpkq_aVi9EvDTA2Wp6r5bTg9lptmr6bg7Qifik0vZBfxEVNmM3ePi1VZdMvFMQi-1oWntjpOimlZqPzBwhw6ahpRt31Dtt1oPRu-Se0KN5WxHzmxa0qdHIpr2qwGD5INpAYb6jjULKi_LxM2r5KEvhv5KsHPh0awRalh-rpKyz36lA5Oh8N0fDQZv51_c1TFMhXZt-VbdtEtn0RUadTx4GtnBSSmil_3f9vTY4rX_brnXrWL_rDZ0UbP-AG6b3cr-L1B2UO0I6p9dMfUL13vo7snNjPjEfqhYYcvYYezNdaww7XEDGvY4W3Y4Q5273AHOqxAh7dAh4sKM_h0oMMadLiusAYdNqB7jE4HR-MPHx1b48PhgUsbx-NSkDzMSE5jweOQZyQTfpRLnkuwlAJPSjBi40DAvopzyj3iUp4ELpcsi-CHwRO0V9WVeIYwhV4vJ5L6GUxwTjMwQ2Sm4owwv0y4PRS2M5xyS4Cv6rCUqdfy5FrBpEowqRVMDx12w-aGAeZvA1634ktBV6sAHKtEvVqmfhgHYFuQOOqhp0au3S2DwNdRz-c3GP0C3bt8X16ivWaxEq_QbX7eFMvFAdolk-RAo_EXgFXB9A
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sleep+assessment+by+means+of+a+wrist+actigraphy-based+algorithm%3A+agreement+with+polysomnography+in+an+ambulatory+study+on+older+adults&rft.jtitle=Chronobiology+international&rft.au=Regalia%2C+Giulia&rft.au=Gerboni%2C+Giulia&rft.au=Migliorini%2C+Matteo&rft.au=Lai%2C+Matteo&rft.date=2021-03-04&rft.issn=1525-6073&rft.eissn=1525-6073&rft.volume=38&rft.issue=3&rft.spage=400&rft_id=info:doi/10.1080%2F07420528.2020.1835942&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0742-0528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0742-0528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0742-0528&client=summon