Sleep assessment by means of a wrist actigraphy-based algorithm: agreement with polysomnography in an ambulatory study on older adults
The purpose of the present work is to examine, on a clinically diverse population of older adults (N = 46) sleeping at home, the performance of two actigraphy-based sleep tracking algorithms (i.e., Actigraphy-based Sleep algorithm, ACT-S1 and Sadeh's algorithm) compared to manually scored elect...
Uloženo v:
| Vydáno v: | Chronobiology international Ročník 38; číslo 3; s. 400 - 414 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
04.03.2021
|
| Témata: | |
| ISSN: | 0742-0528, 1525-6073, 1525-6073 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The purpose of the present work is to examine, on a clinically diverse population of older adults (N = 46) sleeping at home, the performance of two actigraphy-based sleep tracking algorithms (i.e., Actigraphy-based Sleep algorithm, ACT-S1 and Sadeh's algorithm) compared to manually scored electroencephalography-based PSG (PSG-EEG). ACT-S1 allows for a fully automatic identification of sleep period time (SPT) and within the identified sleep period, the sleep-wake classification. SPT detected by ACT-S1 did not differ statistically from using PSG-EEG (bias = -9.98 min; correlation 0.89). In sleep-wake classification on 30-s epochs within the identified sleep period, the new ACT-S1 presented similar or slightly higher accuracy (83-87%), precision (86-89%) and F1 score (90-92%), significantly higher specificity (39-40%), and significantly lower, but still high, sensitivity (96-97%) compared to Sadeh's algorithm, which achieved 99% sensitivity as the only measure better than ACT-S1's. Total sleep times (TST) estimated with ACT-S1 and Sadeh's algorithm were higher, but still highly correlated to PSG-EEG's TST. Sleep quality metrics of sleep period efficiency and wake-after-sleep-onset computed by ACT-S1 were not significantly different from PSG-EEG, while the same sleep quality metrics derived by Sadeh's algorithm differed significantly from PSG-EEG. Agreement between ACT-S1 and PSG-EEG reached was highest when analyzing the subset of subjects with least disrupted sleep (N = 28). These results provide evidence of promising performance of a full-automation of the sleep tracking procedure with ACT-S1 on older adults. Future longitudinal validations across specific medical conditions are needed. The algorithm's performance may further improve with integrating multi-sensor information. |
|---|---|
| AbstractList | The purpose of the present work is to examine, on a clinically diverse population of older adults (N = 46) sleeping at home, the performance of two actigraphy-based sleep tracking algorithms (i.e., Actigraphy-based Sleep algorithm, ACT-S1 and Sadeh's algorithm) compared to manually scored electroencephalography-based PSG (PSG-EEG). ACT-S1 allows for a fully automatic identification of sleep period time (SPT) and within the identified sleep period, the sleep-wake classification. SPT detected by ACT-S1 did not differ statistically from using PSG-EEG (bias = -9.98 min; correlation 0.89). In sleep-wake classification on 30-s epochs within the identified sleep period, the new ACT-S1 presented similar or slightly higher accuracy (83-87%), precision (86-89%) and F1 score (90-92%), significantly higher specificity (39-40%), and significantly lower, but still high, sensitivity (96-97%) compared to Sadeh's algorithm, which achieved 99% sensitivity as the only measure better than ACT-S1's. Total sleep times (TST) estimated with ACT-S1 and Sadeh's algorithm were higher, but still highly correlated to PSG-EEG's TST. Sleep quality metrics of sleep period efficiency and wake-after-sleep-onset computed by ACT-S1 were not significantly different from PSG-EEG, while the same sleep quality metrics derived by Sadeh's algorithm differed significantly from PSG-EEG. Agreement between ACT-S1 and PSG-EEG reached was highest when analyzing the subset of subjects with least disrupted sleep (N = 28). These results provide evidence of promising performance of a full-automation of the sleep tracking procedure with ACT-S1 on older adults. Future longitudinal validations across specific medical conditions are needed. The algorithm's performance may further improve with integrating multi-sensor information.The purpose of the present work is to examine, on a clinically diverse population of older adults (N = 46) sleeping at home, the performance of two actigraphy-based sleep tracking algorithms (i.e., Actigraphy-based Sleep algorithm, ACT-S1 and Sadeh's algorithm) compared to manually scored electroencephalography-based PSG (PSG-EEG). ACT-S1 allows for a fully automatic identification of sleep period time (SPT) and within the identified sleep period, the sleep-wake classification. SPT detected by ACT-S1 did not differ statistically from using PSG-EEG (bias = -9.98 min; correlation 0.89). In sleep-wake classification on 30-s epochs within the identified sleep period, the new ACT-S1 presented similar or slightly higher accuracy (83-87%), precision (86-89%) and F1 score (90-92%), significantly higher specificity (39-40%), and significantly lower, but still high, sensitivity (96-97%) compared to Sadeh's algorithm, which achieved 99% sensitivity as the only measure better than ACT-S1's. Total sleep times (TST) estimated with ACT-S1 and Sadeh's algorithm were higher, but still highly correlated to PSG-EEG's TST. Sleep quality metrics of sleep period efficiency and wake-after-sleep-onset computed by ACT-S1 were not significantly different from PSG-EEG, while the same sleep quality metrics derived by Sadeh's algorithm differed significantly from PSG-EEG. Agreement between ACT-S1 and PSG-EEG reached was highest when analyzing the subset of subjects with least disrupted sleep (N = 28). These results provide evidence of promising performance of a full-automation of the sleep tracking procedure with ACT-S1 on older adults. Future longitudinal validations across specific medical conditions are needed. The algorithm's performance may further improve with integrating multi-sensor information. The purpose of the present work is to examine, on a clinically diverse population of older adults (N = 46) sleeping at home, the performance of two actigraphy-based sleep tracking algorithms (i.e., Actigraphy-based Sleep algorithm, ACT-S1 and Sadeh's algorithm) compared to manually scored electroencephalography-based PSG (PSG-EEG). ACT-S1 allows for a fully automatic identification of sleep period time (SPT) and within the identified sleep period, the sleep-wake classification. SPT detected by ACT-S1 did not differ statistically from using PSG-EEG (bias = -9.98 min; correlation 0.89). In sleep-wake classification on 30-s epochs within the identified sleep period, the new ACT-S1 presented similar or slightly higher accuracy (83-87%), precision (86-89%) and F1 score (90-92%), significantly higher specificity (39-40%), and significantly lower, but still high, sensitivity (96-97%) compared to Sadeh's algorithm, which achieved 99% sensitivity as the only measure better than ACT-S1's. Total sleep times (TST) estimated with ACT-S1 and Sadeh's algorithm were higher, but still highly correlated to PSG-EEG's TST. Sleep quality metrics of sleep period efficiency and wake-after-sleep-onset computed by ACT-S1 were not significantly different from PSG-EEG, while the same sleep quality metrics derived by Sadeh's algorithm differed significantly from PSG-EEG. Agreement between ACT-S1 and PSG-EEG reached was highest when analyzing the subset of subjects with least disrupted sleep (N = 28). These results provide evidence of promising performance of a full-automation of the sleep tracking procedure with ACT-S1 on older adults. Future longitudinal validations across specific medical conditions are needed. The algorithm's performance may further improve with integrating multi-sensor information. |
| Author | Gerboni, Giulia Pham, Jonathan Picard, Rosalind W. Sarkis, Rani A. Puri, Nirajan Onorati, Francesco Regalia, Giulia Pavlova, Milena K. Migliorini, Matteo Lai, Matteo |
| Author_xml | – sequence: 1 givenname: Giulia surname: Regalia fullname: Regalia, Giulia organization: Empatica, Inc., Cambridge, Massachusetts, USA – sequence: 2 givenname: Giulia orcidid: 0000-0002-0741-2732 surname: Gerboni fullname: Gerboni, Giulia organization: Empatica, Inc., Cambridge, Massachusetts, USA – sequence: 3 givenname: Matteo surname: Migliorini fullname: Migliorini, Matteo organization: Empatica, Inc., Cambridge, Massachusetts, USA – sequence: 4 givenname: Matteo surname: Lai fullname: Lai, Matteo organization: Empatica, Inc., Cambridge, Massachusetts, USA – sequence: 5 givenname: Jonathan surname: Pham fullname: Pham, Jonathan organization: Department of Neurology, Edward B. Bromfield Epilepsy Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA – sequence: 6 givenname: Nirajan surname: Puri fullname: Puri, Nirajan organization: Department of Neurology, Edward B. Bromfield Epilepsy Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA – sequence: 7 givenname: Milena K. surname: Pavlova fullname: Pavlova, Milena K. organization: Department of Neurology, Edward B. Bromfield Epilepsy Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA – sequence: 8 givenname: Rosalind W. surname: Picard fullname: Picard, Rosalind W. organization: Empatica, Inc., Cambridge, Massachusetts, USA, MIT Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA – sequence: 9 givenname: Rani A. surname: Sarkis fullname: Sarkis, Rani A. organization: Department of Neurology, Edward B. Bromfield Epilepsy Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA – sequence: 10 givenname: Francesco surname: Onorati fullname: Onorati, Francesco organization: Empatica, Inc., Cambridge, Massachusetts, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33213222$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctu1TAQhq2qqD0tPALISzYpvuQKK1QBrVSpC2AdOfb41Mixg8dRlRfguZtwTlmwqTTSSL--bxbzX5DTEAMQ8pazK85a9oE1pWCVaK8EE2vUyqorxQnZ8UpURc0aeUp2G1Ns0Dm5QPzF2CrW8oycSym4FELsyJ_vHmCiChEQRwiZDgsdQQWk0VJFH5PDTJXObp_U9LAUg0IwVPl9TC4_jB-p2ieAv-bjGtAp-gXjGOKBpy5Qtc44zF7lmBaKeTYLjYFGbyBRZWaf8TV5ZZVHeHPcl-Tn1y8_rm-Ku_tvt9ef7wotWZcLri00phwa09Wg61IPzQCiMlYbK7pOcmtZ09YSWm607jRvWKdbybRVQ7WC8pK8P9ydUvw9A-Z-dKjBexUgztiLspac86be0HdHdB5GMP2U3KjS0j__bgWqA6BTRExg_yGc9VtH_XNH_dZRf-xo9T7952mXVXYx5KScf8F-AspWmRo |
| CitedBy_id | crossref_primary_10_1177_20552076241269555 crossref_primary_10_2196_36377 crossref_primary_10_1016_j_sleh_2023_07_001 crossref_primary_10_1093_sleep_zsad325 crossref_primary_10_1080_07420528_2023_2188096 crossref_primary_10_3389_fendo_2023_1068045 crossref_primary_10_3389_fneur_2021_724904 crossref_primary_10_3390_jcm14072265 crossref_primary_10_1038_s41746_024_01016_9 crossref_primary_10_3389_fpsyt_2025_1574864 crossref_primary_10_1093_sleep_zsaf122 crossref_primary_10_1038_s41398_021_01730_y |
| Cites_doi | 10.1016/j.psychres.2012.07.045 10.5664/jcsm.26796 10.2196/16273 10.1371/journal.pone.0194461 10.1093/sleep/5.4.389 10.5664/jcsm.2482 10.1093/sleep/zsy220 10.1016/j.jsmc.2016.10.008 10.1016/j.clinph.2016.05.275 10.1016/j.sleep.2008.07.009 10.1037/0882-7974.4.3.290 10.1093/sleep/29.10.1353 10.1053/smrv.2001.0245 10.1378/chest.10-1872 10.1093/sleep/26.3.342 10.1007/s12652-017-0477-5 10.1080/07420528.2019.1682006 10.1017/S0033291718001113 10.2196/jmir.9410 10.5664/jcsm.7228 10.1111/jsr.12926 10.1109/JBHI.2018.2867619 10.3389/fphys.2017.01100 10.1093/sleep/zsx097 10.2147/NSS.S114969 10.1080/07420528.2017.1413578 10.5664/jcsm.7176 10.1109/JBHI.2015.2490480 10.1080/15402002.2017.1300587 10.1038/s41746-019-0126-9 10.1093/sleep/26.1.81 10.2307/2529310 10.2147/NSS.S151085 10.1016/j.smrv.2019.05.001 10.2217/pme-2018-0044 10.1093/sleep/30.11.1445 10.1038/nature04286 10.1016/j.aap.2015.05.009 10.1111/j.1365-2869.2010.00857.x 10.1016/j.smrv.2016.02.001 10.1093/sleep/30.10.1362 10.1093/sleep/17.3.201 10.1038/s41598-019-49703-y 10.1016/j.smrv.2017.12.002 10.5664/jcsm.6576 10.1016/S1389-9457(00)00098-8 10.1093/sleep/28.4.499 10.1093/sleep/31.2.283 10.1093/sleep/zsz180 10.1016/j.pcad.2008.10.003 10.5664/jcsm.26508 10.3109/07420528.2010.516381 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1080/07420528.2020.1835942 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1525-6073 |
| EndPage | 414 |
| ExternalDocumentID | 33213222 10_1080_07420528_2020_1835942 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 00X 03L 0BK 0R~ 29B 30N 36B 4.4 53G 5GY 5RE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAPXX AAQRR AAYXX ABCCY ABFIM ABIVO ABJNI ABLIJ ABLKL ABPAQ ABXUL ABXYU ACGEJ ACGFS ACKOT ACTIO ADCVX ADGTB ADRBQ ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AHDZW AIJEM AIYEW AIZAD AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AWYRJ BABNJ BLEHA CCCUG CITATION CS3 DGEBU DKSSO DU5 EBS EMOBN F5P H13 HZ~ KRBQP KWAYT KYCEM LJTGL M4Z O9- P2P RNANH ROSJB RTWRZ TASJS TBQAZ TDBHL TFDNU TFL TFT TFW TQWBC TTHFI TUROJ V1S ZGOLN ~02 ~1N .GJ 0VX 5VS AAAVZ AAGME AALIY AAOAP ABFMO ABTAA ACBBU ACDHJ ACQMU ACZPZ ADGTR ADOPC ADYSH AFDYB APNXG AURDB BFWEY CAG CGR COF CUY CVF CWRZV ECM EIF EJD FA8 HGUVV IPNFZ JEPSP M44 NPM NUSFT OWHGL PCLFJ RIG UAP XJT YHZ ZXP 7X8 AQTUD |
| ID | FETCH-LOGICAL-c309t-1cfe7d4b7d96ec64cb7be25dfcdf29931ff07863e81dcc9c1709c830cfab5e253 |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000590634500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0742-0528 1525-6073 |
| IngestDate | Sun Nov 09 10:23:58 EST 2025 Thu Apr 03 06:53:34 EDT 2025 Sat Nov 29 02:38:59 EST 2025 Tue Nov 18 21:01:50 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | older adults sleep detection Actigraphy-based sleep tracking algorithms wearables polysomnography sleep quality |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c309t-1cfe7d4b7d96ec64cb7be25dfcdf29931ff07863e81dcc9c1709c830cfab5e253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0741-2732 |
| PMID | 33213222 |
| PQID | 2463111765 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2463111765 pubmed_primary_33213222 crossref_primary_10_1080_07420528_2020_1835942 crossref_citationtrail_10_1080_07420528_2020_1835942 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-04 |
| PublicationDateYYYYMMDD | 2021-03-04 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Chronobiology international |
| PublicationTitleAlternate | Chronobiol Int |
| PublicationYear | 2021 |
| References | Walch O (cit0063) 2019; 42 Blood MA (cit0005) 1997; 20 cit0034 Meltzer LJ (cit0036) 2012; 35 cit0032 cit0030 Radha M (cit0048) 2019; 9 Lee J-M (cit0031) 2018; 15 Shrivastava D (cit0054) 2014; 4 Zhang L (cit0066) 2019; 42 Grandner M (cit0022) 2018; 14 Deutsch PA (cit0019) 2006; 2 Chow CM (cit0010) 2016; 8 Cole RJ (cit0011) 1992; 15 cit0039 cit0037 cit0038 cit0035 cit0023 cit0020 Sadeh A (cit0049) 2011; 15 Watson NF (cit0064) 2015; 38 cit0061 O’Donnell J (cit0042) 2017 Li X (cit0033) 2020 van Hees VT (cit0062) 2018 Ho KM (cit0026) 2018; 2 Fonseca P (cit0021) 2017; 40 Newell J (cit0041) 2012; 200 cit0028 cit0029 cit0027 cit0024 Pan J (cit0044) 1985; 32 cit0055 cit0012 cit0056 Sano A (cit0051) 2019; 23 cit0052 Webster JB (cit0065) 1982; 5 cit0050 Herzig D (cit0025) 2018; 8 Sarkis RA (cit0053) 2016; 127 Tracy DJ (cit0060) 2014; 9 cit0017 cit0018 cit0015 cit0016 cit0057 cit0014 cit0058 cit0001 cit0045 Taibi DM (cit0059) 2013; 9 cit0040 Danzig R (cit0013) 2020; 29 cit0008 cit0009 cit0006 cit0007 Palotti J (cit0043) 2019; 2 cit0004 cit0002 cit0046 cit0003 cit0047 35333133 - Chronobiol Int. 2022 Mar 25;:1 |
| References_xml | – volume: 200 start-page: 795 issue: 2 year: 2012 ident: cit0041 publication-title: Psychiatry Res. doi: 10.1016/j.psychres.2012.07.045 – ident: cit0007 doi: 10.5664/jcsm.26796 – ident: cit0023 doi: 10.2196/16273 – ident: cit0061 doi: 10.1371/journal.pone.0194461 – volume: 5 start-page: 389 issue: 4 year: 1982 ident: cit0065 publication-title: Sleep. doi: 10.1093/sleep/5.4.389 – volume: 9 start-page: 217 issue: 3 year: 2013 ident: cit0059 publication-title: J Clin Sleep Med. doi: 10.5664/jcsm.2482 – volume: 42 start-page: 11 year: 2019 ident: cit0066 publication-title: Sleep. doi: 10.1093/sleep/zsy220 – ident: cit0037 doi: 10.1016/j.jsmc.2016.10.008 – volume: 127 start-page: 2785 issue: 8 year: 2016 ident: cit0053 publication-title: Clin Neurophysiol Off J Int Fed Clin Neurophysiol. doi: 10.1016/j.clinph.2016.05.275 – ident: cit0008 doi: 10.1016/j.sleep.2008.07.009 – volume: 2 start-page: 68 issue: 2 year: 2018 ident: cit0026 publication-title: J Emerg Crit Care Med. – ident: cit0039 doi: 10.1037/0882-7974.4.3.290 – volume: 15 start-page: 6 year: 2018 ident: cit0031 publication-title: Int J Environ Res Public Health. – ident: cit0055 doi: 10.1093/sleep/29.10.1353 – ident: cit0006 doi: 10.1053/smrv.2001.0245 – ident: cit0034 doi: 10.1378/chest.10-1872 – ident: cit0001 doi: 10.1093/sleep/26.3.342 – ident: cit0015 doi: 10.1007/s12652-017-0477-5 – ident: cit0024 doi: 10.1080/07420528.2019.1682006 – ident: cit0009 doi: 10.1017/S0033291718001113 – ident: cit0052 doi: 10.2196/jmir.9410 – start-page: 8 year: 2018 ident: cit0062 publication-title: Sci Rep. – ident: cit0035 – volume: 20 start-page: 388 year: 1997 ident: cit0005 publication-title: Sleep – ident: cit0056 doi: 10.5664/jcsm.7228 – volume: 29 start-page: e12926 issue: 1 year: 2020 ident: cit0013 publication-title: J Sleep Res. doi: 10.1111/jsr.12926 – volume: 23 start-page: 1607 issue: 4 year: 2019 ident: cit0051 publication-title: IEEE J Biomed Health Inform. doi: 10.1109/JBHI.2018.2867619 – volume: 15 start-page: 461 issue: 5 year: 1992 ident: cit0011 publication-title: Cole RJ. – volume: 8 start-page: 1100 year: 2018 ident: cit0025 publication-title: Front Physiol. doi: 10.3389/fphys.2017.01100 – volume: 40 issue: 7 year: 2017 ident: cit0021 publication-title: Sleep doi: 10.1093/sleep/zsx097 – start-page: 1 year: 2020 ident: cit0033 publication-title: Chronobiol Int. – volume: 8 start-page: 321 year: 2016 ident: cit0010 publication-title: Nat Sci Sleep. doi: 10.2147/NSS.S114969 – ident: cit0017 doi: 10.1080/07420528.2017.1413578 – volume: 14 start-page: 1031 issue: 6 year: 2018 ident: cit0022 publication-title: J Clin Sleep Med doi: 10.5664/jcsm.7176 – ident: cit0027 doi: 10.1109/JBHI.2015.2490480 – volume: 35 start-page: 159 issue: 1 year: 2012 ident: cit0036 publication-title: Sleep. – ident: cit0018 doi: 10.1080/15402002.2017.1300587 – volume: 2 start-page: 50 issue: 1 year: 2019 ident: cit0043 publication-title: Npj Digit Med. doi: 10.1038/s41746-019-0126-9 – volume: 38 start-page: 843 issue: 6 year: 2015 ident: cit0064 publication-title: Sleep. – ident: cit0016 doi: 10.1093/sleep/26.1.81 – ident: cit0030 doi: 10.2307/2529310 – ident: cit0047 doi: 10.2147/NSS.S151085 – ident: cit0012 doi: 10.1016/j.smrv.2019.05.001 – ident: cit0020 doi: 10.2217/pme-2018-0044 – ident: cit0038 doi: 10.1093/sleep/30.11.1445 – ident: cit0058 doi: 10.1038/nature04286 – volume: 9 start-page: 4 year: 2014 ident: cit0060 publication-title: PLoS ONE. – ident: cit0014 doi: 10.1016/j.aap.2015.05.009 – ident: cit0057 doi: 10.1111/j.1365-2869.2010.00857.x – ident: cit0032 doi: 10.1016/j.smrv.2016.02.001 – ident: cit0045 doi: 10.1093/sleep/30.10.1362 – volume: 4 start-page: 5 year: 2014 ident: cit0054 publication-title: J Community Hosp Intern Med Perspect. – ident: cit0050 doi: 10.1093/sleep/17.3.201 – volume: 9 start-page: 14149 issue: 1 year: 2019 ident: cit0048 publication-title: Sci Rep. doi: 10.1038/s41598-019-49703-y – ident: cit0002 doi: 10.1016/j.smrv.2017.12.002 – ident: cit0003 doi: 10.5664/jcsm.6576 – ident: cit0028 doi: 10.1016/S1389-9457(00)00098-8 – ident: cit0029 doi: 10.1093/sleep/28.4.499 – ident: cit0004 doi: 10.1093/sleep/31.2.283 – volume: 42 start-page: 19 issue: 12 year: 2019 ident: cit0063 publication-title: Sleep. doi: 10.1093/sleep/zsz180 – volume: 15 start-page: 31 year: 2011 ident: cit0049 publication-title: Sleep Med Rev. – ident: cit0040 doi: 10.1016/j.pcad.2008.10.003 – volume: 32 start-page: 1396 year: 1985 ident: cit0044 publication-title: IEEE Trans Biomed Eng. – start-page: 225516 year: 2017 ident: cit0042 publication-title: bioRxiv. – volume: 2 start-page: 9 issue: 2 year: 2006 ident: cit0019 publication-title: J Clin Sleep Med. doi: 10.5664/jcsm.26508 – ident: cit0046 doi: 10.3109/07420528.2010.516381 – reference: 35333133 - Chronobiol Int. 2022 Mar 25;:1 |
| SSID | ssj0008063 |
| Score | 2.389358 |
| Snippet | The purpose of the present work is to examine, on a clinically diverse population of older adults (N = 46) sleeping at home, the performance of two... The purpose of the present work is to examine, on a clinically diverse population of older adults (N = 46) sleeping at home, the performance of two... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 400 |
| SubjectTerms | Actigraphy Aged Algorithms Circadian Rhythm Humans Polysomnography Reproducibility of Results Sleep Wrist |
| Title | Sleep assessment by means of a wrist actigraphy-based algorithm: agreement with polysomnography in an ambulatory study on older adults |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33213222 https://www.proquest.com/docview/2463111765 |
| Volume | 38 |
| WOSCitedRecordID | wos000590634500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis customDbUrl: eissn: 1525-6073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008063 issn: 0742-0528 databaseCode: TFW dateStart: 19840101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2cREvCMatXCYjIV6qTLk75g2hdTx0BYlO9C1yHLuLlCalTcf6B_hR_DqOL8m6MsR4QKqiyq6TyufL8fE5x99B6I3kMWM0CZwwo8IJCckdJiPuRFngRZKEVFKmi02Q0SiZTOjnnZ2f7VmY85JUVXJxQef_VdTQBsJWR2f_QdzdTaEBvoPQ4Qpih-uNBP-lFGLeZx3jpjIwZ4KZdDfW_67eak2hYbiqHbWO5X1WTutF0Zxpvz2DTbh2Gxo37bwu18t6Vll2a-UiAa3AZpkq_aVi9EvDTA2Wp6r5bTg9lptmr6bg7Qifik0vZBfxEVNmM3ePi1VZdMvFMQi-1oWntjpOimlZqPzBwhw6ahpRt31Dtt1oPRu-Se0KN5WxHzmxa0qdHIpr2qwGD5INpAYb6jjULKi_LxM2r5KEvhv5KsHPh0awRalh-rpKyz36lA5Oh8N0fDQZv51_c1TFMhXZt-VbdtEtn0RUadTx4GtnBSSmil_3f9vTY4rX_brnXrWL_rDZ0UbP-AG6b3cr-L1B2UO0I6p9dMfUL13vo7snNjPjEfqhYYcvYYezNdaww7XEDGvY4W3Y4Q5273AHOqxAh7dAh4sKM_h0oMMadLiusAYdNqB7jE4HR-MPHx1b48PhgUsbx-NSkDzMSE5jweOQZyQTfpRLnkuwlAJPSjBi40DAvopzyj3iUp4ELpcsi-CHwRO0V9WVeIYwhV4vJ5L6GUxwTjMwQ2Sm4owwv0y4PRS2M5xyS4Cv6rCUqdfy5FrBpEowqRVMDx12w-aGAeZvA1634ktBV6sAHKtEvVqmfhgHYFuQOOqhp0au3S2DwNdRz-c3GP0C3bt8X16ivWaxEq_QbX7eFMvFAdolk-RAo_EXgFXB9A |
| linkProvider | Taylor & Francis |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sleep+assessment+by+means+of+a+wrist+actigraphy-based+algorithm%3A+agreement+with+polysomnography+in+an+ambulatory+study+on+older+adults&rft.jtitle=Chronobiology+international&rft.au=Regalia%2C+Giulia&rft.au=Gerboni%2C+Giulia&rft.au=Migliorini%2C+Matteo&rft.au=Lai%2C+Matteo&rft.date=2021-03-04&rft.issn=1525-6073&rft.eissn=1525-6073&rft.volume=38&rft.issue=3&rft.spage=400&rft_id=info:doi/10.1080%2F07420528.2020.1835942&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0742-0528&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0742-0528&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0742-0528&client=summon |