A bottom-up intra-hour proactive scheduling of thermal appliances for household peak avoiding based on model predictive control

•A bottom-up intra-hour proactive scheduling for household peak avoiding.•Physic-based modeling and simulation of thermal appliances.•MPC controller formulation with soft constraints and flat tariffs.•Minimization of high-power appliances’ concurrent operations considering user comfort.•Key factors...

Full description

Saved in:
Bibliographic Details
Published in:Applied energy Vol. 323; p. 119591
Main Authors: Zheng, Zhuang, Pan, Jia, Huang, Gongsheng, Luo, Xiaowei
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.10.2022
Subjects:
ISSN:0306-2619, 1872-9118
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A bottom-up intra-hour proactive scheduling for household peak avoiding.•Physic-based modeling and simulation of thermal appliances.•MPC controller formulation with soft constraints and flat tariffs.•Minimization of high-power appliances’ concurrent operations considering user comfort.•Key factors and computational complexity analyzed. Residential-level peak shaving is beneficial for the supply–demand balance of buildings with a limited power capacity of renewable energy sources like building-integrated photovoltaics. Thermostatically controlled loads (TCLs) are recognized as flexible resources for peak shaving. In practice, most thermal appliances are controlled by local on–off controllers without any communication and coordination. Multiple appliances may operate simultaneously and produce load peaks. Existing studies assume the existence of an electricity market and time-varying tariffs, which are not always available. This paper developed a model predictive control (MPC) based bottom-up proactive method to leverage the thermal inertia of residential thermal appliances for avoiding household peak load without relying on time-varying tariffs. First, we used a physics-based modeling approach to model the thermal dynamics of several residential thermal devices. Then, we designed a centralized MPC controller to minimize the appliance concurrent operations considering occupant comfort zones and appliance rate powers. Consequently, the house peak load is reduced by minimizing concurrent operations. Simulations over homogenous and heterogenous appliance set validated that the MPC-based proactive scheduling method can effectively reduce household peak load without compromising user comfort too much. Finally, we discussed the impact of control interval, appliance rated powers, and penalty factors on peak avoiding and the computational feasibility of the MPC controller. We concluded that the MPC-based proactive scheduling is feasible and effective for a limited number of thermal appliances with short horizons (i.e., six-step). Replacing a mixed-integer nonlinear program solver with a mixed-integer quadratic program solver could significantly reduce the computational burden. However, the application of the MPC controller to multiple households at the system level is still impractical. Further research efforts are emphasized, like mining and forecasting occupant demand and appliance usage patterns in households and designing scalable control strategies for system-level peak shaving.
AbstractList Residential-level peak shaving is beneficial for the supply–demand balance of buildings with a limited power capacity of renewable energy sources like building-integrated photovoltaics. Thermostatically controlled loads (TCLs) are recognized as flexible resources for peak shaving. In practice, most thermal appliances are controlled by local on–off controllers without any communication and coordination. Multiple appliances may operate simultaneously and produce load peaks. Existing studies assume the existence of an electricity market and time-varying tariffs, which are not always available. This paper developed a model predictive control (MPC) based bottom-up proactive method to leverage the thermal inertia of residential thermal appliances for avoiding household peak load without relying on time-varying tariffs. First, we used a physics-based modeling approach to model the thermal dynamics of several residential thermal devices. Then, we designed a centralized MPC controller to minimize the appliance concurrent operations considering occupant comfort zones and appliance rate powers. Consequently, the house peak load is reduced by minimizing concurrent operations. Simulations over homogenous and heterogenous appliance set validated that the MPC-based proactive scheduling method can effectively reduce household peak load without compromising user comfort too much. Finally, we discussed the impact of control interval, appliance rated powers, and penalty factors on peak avoiding and the computational feasibility of the MPC controller. We concluded that the MPC-based proactive scheduling is feasible and effective for a limited number of thermal appliances with short horizons (i.e., six-step). Replacing a mixed-integer nonlinear program solver with a mixed-integer quadratic program solver could significantly reduce the computational burden. However, the application of the MPC controller to multiple households at the system level is still impractical. Further research efforts are emphasized, like mining and forecasting occupant demand and appliance usage patterns in households and designing scalable control strategies for system-level peak shaving.
•A bottom-up intra-hour proactive scheduling for household peak avoiding.•Physic-based modeling and simulation of thermal appliances.•MPC controller formulation with soft constraints and flat tariffs.•Minimization of high-power appliances’ concurrent operations considering user comfort.•Key factors and computational complexity analyzed. Residential-level peak shaving is beneficial for the supply–demand balance of buildings with a limited power capacity of renewable energy sources like building-integrated photovoltaics. Thermostatically controlled loads (TCLs) are recognized as flexible resources for peak shaving. In practice, most thermal appliances are controlled by local on–off controllers without any communication and coordination. Multiple appliances may operate simultaneously and produce load peaks. Existing studies assume the existence of an electricity market and time-varying tariffs, which are not always available. This paper developed a model predictive control (MPC) based bottom-up proactive method to leverage the thermal inertia of residential thermal appliances for avoiding household peak load without relying on time-varying tariffs. First, we used a physics-based modeling approach to model the thermal dynamics of several residential thermal devices. Then, we designed a centralized MPC controller to minimize the appliance concurrent operations considering occupant comfort zones and appliance rate powers. Consequently, the house peak load is reduced by minimizing concurrent operations. Simulations over homogenous and heterogenous appliance set validated that the MPC-based proactive scheduling method can effectively reduce household peak load without compromising user comfort too much. Finally, we discussed the impact of control interval, appliance rated powers, and penalty factors on peak avoiding and the computational feasibility of the MPC controller. We concluded that the MPC-based proactive scheduling is feasible and effective for a limited number of thermal appliances with short horizons (i.e., six-step). Replacing a mixed-integer nonlinear program solver with a mixed-integer quadratic program solver could significantly reduce the computational burden. However, the application of the MPC controller to multiple households at the system level is still impractical. Further research efforts are emphasized, like mining and forecasting occupant demand and appliance usage patterns in households and designing scalable control strategies for system-level peak shaving.
ArticleNumber 119591
Author Pan, Jia
Huang, Gongsheng
Zheng, Zhuang
Luo, Xiaowei
Author_xml – sequence: 1
  givenname: Zhuang
  surname: Zheng
  fullname: Zheng, Zhuang
  organization: Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong
– sequence: 2
  givenname: Jia
  surname: Pan
  fullname: Pan, Jia
  organization: Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong
– sequence: 3
  givenname: Gongsheng
  surname: Huang
  fullname: Huang, Gongsheng
  organization: Department of Architecture and Civil Engineering, City University of Hong Kong, Yeung Academic Building, Tat Chee Ave, Kowloon, Hong Kong
– sequence: 4
  givenname: Xiaowei
  surname: Luo
  fullname: Luo, Xiaowei
  email: xiaowluo@cityu.edu.hk
  organization: Department of Architecture and Civil Engineering, City University of Hong Kong, Yeung Academic Building, Tat Chee Ave, Kowloon, Hong Kong
BookMark eNqFkD1vFDEQhi2USFxC_gJySbPH2PtxXomCKCIEKRIN1NasPZvz4V0vtu-kVPx1fFrS0KSa5n3emXmu2MUcZmLsvYCtANF9PGxxoZni0_NWgpRbIfq2F2_YRqidrHoh1AXbQA1dJTvRv2VXKR0AQAoJG_bnlg8h5zBVx4W7OUes9uEY-RIDmuxOxJPZkz16Nz_xMPK8pzih57gs3uFsKPExRF6YRPvgLV8If3E8BWfPxICJLA8zn4IlX1rJurXWhLIs-HfsckSf6ObfvGY_77_8uHuoHr9__XZ3-1iZGlSuyChh62ZAwJZMB73BkZB6gNbYph26pmkJUVHTjZKUhEHA0Na1tAbrUQ71Nfuw9pbHfh8pZT25ZMh7nKncruVOKKmU3HUl-mmNmhhSijRq4zJmdz4YndcC9Nm7PugX7_rsXa_eC979hy_RTRifXwc_ryAVDydHUSfjqCi2LpLJ2gb3WsVfNymnVw
CitedBy_id crossref_primary_10_1016_j_rser_2023_114023
crossref_primary_10_1016_j_apenergy_2025_126424
crossref_primary_10_1109_TSG_2023_3306044
crossref_primary_10_1007_s44163_025_00368_9
crossref_primary_10_1109_TASE_2024_3389711
crossref_primary_10_1016_j_apenergy_2023_120913
crossref_primary_10_1016_j_jobe_2024_109548
crossref_primary_10_1016_j_jobe_2024_109715
Cites_doi 10.1016/j.segan.2018.05.001
10.1109/TSG.2012.2222944
10.1109/TSG.2014.2349352
10.1109/TCST.2011.2124461
10.1109/ACC.2012.6315252
10.3390/su10041001
10.1016/j.enbuild.2014.10.019
10.1109/TPWRS.2014.2328865
10.1016/j.apenergy.2020.115543
10.1016/j.enbuild.2014.02.013
10.1016/j.scs.2018.01.030
10.1016/j.apenergy.2018.08.051
10.1016/j.apenergy.2018.09.188
10.1109/ACC.2014.6858967
10.1109/TPWRS.2013.2266121
10.1109/TSG.2013.2265239
10.1109/TSG.2017.2766880
10.1109/TSG.2012.2201182
10.1109/TSG.2011.2177282
10.1016/j.apenergy.2015.01.089
10.1016/j.apenergy.2021.117159
10.1016/j.apenergy.2017.03.055
10.1109/TSG.2020.2977203
10.1109/TSG.2013.2251018
10.1016/j.apenergy.2015.01.145
10.1287/mnsc.31.12.1533
10.1016/B978-0-12-813185-5.00025-5
10.1016/j.scs.2017.04.006
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2022.119591
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
ExternalDocumentID 10_1016_j_apenergy_2022_119591
S0306261922008996
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c308t-ec81d34ba0a5ec609cafeae9005cd45b6445eaa8e46f2e820b10b5332dca3f2b3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000841966600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Mon Sep 29 05:59:43 EDT 2025
Tue Nov 18 22:06:22 EST 2025
Sat Nov 29 07:17:22 EST 2025
Fri Feb 23 02:35:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermal appliances
Model predictive control
Proactive scheduling
Peak avoidance
Bottom-up
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c308t-ec81d34ba0a5ec609cafeae9005cd45b6445eaa8e46f2e820b10b5332dca3f2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2718288276
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718288276
crossref_citationtrail_10_1016_j_apenergy_2022_119591
crossref_primary_10_1016_j_apenergy_2022_119591
elsevier_sciencedirect_doi_10_1016_j_apenergy_2022_119591
PublicationCentury 2000
PublicationDate 2022-10-01
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mirakhorli, Dong (b0060) 2018; 230
Oldewurtel, Parisio, Jones, Morari, Gyalistras, Gwerder (b0050) 2010 2010.
Gridlab-d – Residential module user’s guide n.d. <http://gridlab-d.shoutwiki.com/wiki/Residential_module_user%27s_guide>.
Wu, He, Xu, Lu, Lu, Wang (b0090) 2018; 9
Korkas CD, Baldi S, Kosmatopoulos E. Chapter 9 – Grid-Connected Microgrids_ Demand Management via Distributed Control and Human-in-the-Loop Optimization _ Elsevier Enhanced Reader.pdf. In: Yahyaoui I, editor. Adv renew energies power technol. Biomass, Fuel Cells, Geotherm. Energies, Smart Grids, Elsevier Science, vol. 2; 2018. p. 315–44. doi:https://doi.org/10.1016/C2016-0-04919-7.
Martínez-Ballester S, Leon-Moya B, Vesson M, Gonzálvez-Maciá J, Corberán JM. Dynamic performance simulation of a household refrigerator with a quasi-steady approach. Int Refrig Air Cond Conf Purdue, Purdue; 2012. p. 8. doi:http://docs.lib.purdue.edu/iracc.
Zheng, Sun, Pan, Luo (b0080) 2021; 298
Borges, Melo, Hermes (b0185) 2015; 147
Santos GZ, Ronzoni AF, Hermes CJL. Quasi-steady-state simulation of the on-off behaviour of household refrigerators: a self-tuning approach 2019;2019–Augus:1871–8. doi:10.18462/iir.icr.2019.0076.
Winstead, Bhandari, Nutaro, Kuruganti (b0100) 2020; 277
Rahmani-andebili (b0045) 2017; 32
Baldi, Korkas, Lv, Kosmatopoulos (b0075) 2018; 231
Dongol, Feldmann, Schmidt, Bollin (b0005) 2018; 16
Baeten, Rogiers, Helsen (b0065) 2017; 195
Hu, Member, Nutaro, Member (b0095) 2020; 3053
Sturzenegger D, Gyalistras D, Semeraro V, Morari M, Smith RS. BRCM Matlab Toolbox: Model generation for model predictive building control. In: Proc Am Control Conf, Portland, OR, USA: American Automatic Control Council; 2014. p. 1063–9. doi:10.1109/ACC.2014.6858967.
Mirakhorli, Dong (b0200) 2018; 38
Nghiem, Behl, Mangharam, Pappas (b0110) 2012
Gupta, Ravindran (b0220) 1985; 31
Rawlings, Mayne (b0030) 2019
Nghiem TX, Behl M, Mangharam R, Pappas GJ. Green Scheduling of control systems for peak demand reduction. IEEE Conf Decis Control (CDC 2011) 2011:3050–5. doi:10.1109/acc.2012.6315252.
Lu, Zhang (b0085) 2013; 4
Ma, Borrelli, Hencey, Coffey, Bengea, Haves (b0055) 2012; 20
Zhou, Shi, Tang, Li, Li, Gong (b0115) 2019; 12
Oldewurtel, Ulbig, Parisio, Andersson, Morari (b0010) 2010
Borges B, Hermes C, Melo C, Gonzalves JM. Transient simulation of household refrigerators : Int Refrig Air Cond Conf, Purdue; 2010. doi:http://docs.lib.purdue.edu/iracc.
Zheng, Chen, Luo (b0195) 2018; 10
Chassin DP. New Residential Thermostat for Transactive Systems. PhD; thesis; 2014.
Zhao, Lu, Yan, Wang (b0040) 2015; 86
Bonmin, https://github.com/coin-or/Bonmin.
Facchinetti, Della (b0130) 2010
Zhao, Lee, Shin, Bin (b0020) 2013; 4
Caprino, Della Vedova, Facchinetti (b0140) 2014; 75
Tesfatsion L, Battula S. Notes on the GridLAB-D household equivalent thermal parameter model. Iowa State Univ; 2020. p. 1–28. doi:http://www2.econ.iastate.edu/tesfatsi/GLDETPHouseholdModel.Notes.LTesfatsionSBattula.pdf.
Zong, Kullmann, Thavlov, Gehrke, Bindner (b0015) 2012; 3
Korkas, Baldi, Michailidis, Kosmatopoulos (b0070) 2015; 149
Zhang, Lian, Chang, Kalsi (b0230) 2013; 28
Taylor, Gowri, Katipamula (b0150) 2008
Anvari-Moghaddam, Monsef, Rahimi-Kian (b0170) 2015; 6
Hao, Sanandaji, Poolla, Vincent (b0120) 2015; 30
Chen, Wang, Heo, Kishore (b0035) 2013; 4
Home, COIN-OR, BONMIN Users' Manual.
Della Vedova, Facchinetti (b0135) 2012
CasADi – Build efficient optimal control software, with minimal effort. n.d. <https://web.casadi.org/>.
Pipattanasomporn, Kuzlu, Rahman (b0025) 2012; 3
Bliek, Bonami, Lodi (b0225) 2014
Mirakhorli (10.1016/j.apenergy.2022.119591_b0060) 2018; 230
Zhao (10.1016/j.apenergy.2022.119591_b0040) 2015; 86
Facchinetti (10.1016/j.apenergy.2022.119591_b0130) 2010
Pipattanasomporn (10.1016/j.apenergy.2022.119591_b0025) 2012; 3
Zhang (10.1016/j.apenergy.2022.119591_b0230) 2013; 28
Oldewurtel (10.1016/j.apenergy.2022.119591_b0010) 2010
Chen (10.1016/j.apenergy.2022.119591_b0035) 2013; 4
Hao (10.1016/j.apenergy.2022.119591_b0120) 2015; 30
Anvari-Moghaddam (10.1016/j.apenergy.2022.119591_b0170) 2015; 6
10.1016/j.apenergy.2022.119591_b0160
Zhao (10.1016/j.apenergy.2022.119591_b0020) 2013; 4
Baldi (10.1016/j.apenergy.2022.119591_b0075) 2018; 231
10.1016/j.apenergy.2022.119591_b0180
Zong (10.1016/j.apenergy.2022.119591_b0015) 2012; 3
Baeten (10.1016/j.apenergy.2022.119591_b0065) 2017; 195
Zheng (10.1016/j.apenergy.2022.119591_b0080) 2021; 298
10.1016/j.apenergy.2022.119591_b0205
10.1016/j.apenergy.2022.119591_b0105
Korkas (10.1016/j.apenergy.2022.119591_b0070) 2015; 149
Oldewurtel (10.1016/j.apenergy.2022.119591_b0050) 2010
10.1016/j.apenergy.2022.119591_b0125
10.1016/j.apenergy.2022.119591_b0145
Mirakhorli (10.1016/j.apenergy.2022.119591_b0200) 2018; 38
Hu (10.1016/j.apenergy.2022.119591_b0095) 2020; 3053
Della Vedova (10.1016/j.apenergy.2022.119591_b0135) 2012
10.1016/j.apenergy.2022.119591_b0165
Lu (10.1016/j.apenergy.2022.119591_b0085) 2013; 4
Gupta (10.1016/j.apenergy.2022.119591_b0220) 1985; 31
Borges (10.1016/j.apenergy.2022.119591_b0185) 2015; 147
10.1016/j.apenergy.2022.119591_b0175
Taylor (10.1016/j.apenergy.2022.119591_b0150) 2008
10.1016/j.apenergy.2022.119591_b0190
Dongol (10.1016/j.apenergy.2022.119591_b0005) 2018; 16
Zheng (10.1016/j.apenergy.2022.119591_b0195) 2018; 10
Wu (10.1016/j.apenergy.2022.119591_b0090) 2018; 9
10.1016/j.apenergy.2022.119591_b0215
Nghiem (10.1016/j.apenergy.2022.119591_b0110) 2012
10.1016/j.apenergy.2022.119591_b0155
10.1016/j.apenergy.2022.119591_b0210
Winstead (10.1016/j.apenergy.2022.119591_b0100) 2020; 277
Zhou (10.1016/j.apenergy.2022.119591_b0115) 2019; 12
Bliek (10.1016/j.apenergy.2022.119591_b0225) 2014
Rahmani-andebili (10.1016/j.apenergy.2022.119591_b0045) 2017; 32
Ma (10.1016/j.apenergy.2022.119591_b0055) 2012; 20
Caprino (10.1016/j.apenergy.2022.119591_b0140) 2014; 75
Rawlings (10.1016/j.apenergy.2022.119591_b0030) 2019
References_xml – volume: 3
  start-page: 2166
  year: 2012
  end-page: 2173
  ident: b0025
  article-title: An algorithm for intelligent home energy management and demand response analysis
  publication-title: IEEE Trans Smart Grid
– year: 2012
  ident: b0135
  article-title: Feedback scheduling of real-time physical systems with integrator dynamics
  publication-title: IEEE Int Conf Emerg Technol Fact Autom ETFA
– volume: 230
  start-page: 627
  year: 2018
  end-page: 642
  ident: b0060
  article-title: Model predictive control for building loads connected with a residential distribution grid
  publication-title: Appl Energy
– volume: 12
  year: 2019
  ident: b0115
  article-title: Aggregate control strategy for thermostatically controlled loads with demand response
  publication-title: Energies
– volume: 28
  start-page: 4655
  year: 2013
  end-page: 4664
  ident: b0230
  article-title: Aggregated modeling and control of air conditioning loads for demand response
  publication-title: IEEE Trans Power Syst
– volume: 16
  start-page: 1
  year: 2018
  end-page: 13
  ident: b0005
  article-title: A model predictive control based peak shaving application of battery for a household with photovoltaic system in a rural distribution grid
  publication-title: Sustain Energy, Grids Netw
– volume: 3053
  start-page: 4133
  year: 2020
  end-page: 4143
  ident: b0095
  article-title: A priority-based control strategy and performance bound for aggregated HVAC-based load shaping
  publication-title: IEEE Trans Smart Grid
– volume: 6
  start-page: 324
  year: 2015
  end-page: 332
  ident: b0170
  article-title: Optimal smart home energy management considering energy saving and a comfortable lifestyle
  publication-title: IEEE Trans Smart Grid
– volume: 32
  start-page: 338
  year: 2017
  end-page: 347
  ident: b0045
  article-title: Scheduling deferrable appliances and energy resources of a smart home applying multi-time scale stochastic model predictive control
  publication-title: Sustain Cities Soc
– volume: 10
  year: 2018
  ident: b0195
  article-title: A supervised event-based non-intrusive load monitoring for non-linear appliances
  publication-title: Sustainability
– volume: 195
  start-page: 184
  year: 2017
  end-page: 195
  ident: b0065
  article-title: Reduction of heat pump induced peak electricity use and required generation capacity through thermal energy storage and demand response
  publication-title: Appl Energy
– volume: 298
  start-page: 117159
  year: 2021
  ident: b0080
  article-title: An integrated smart home energy management model based on a pyramid taxonomy for residential houses with photovoltaic-battery systems
  publication-title: Appl Energy
– reference: Borges B, Hermes C, Melo C, Gonzalves JM. Transient simulation of household refrigerators : Int Refrig Air Cond Conf, Purdue; 2010. doi:http://docs.lib.purdue.edu/iracc.
– volume: 4
  start-page: 1391
  year: 2013
  end-page: 1400
  ident: b0020
  article-title: An optimal power scheduling method for demand response in home energy management system
  publication-title: IEEE Trans Smart Grid
– volume: 30
  start-page: 189
  year: 2015
  end-page: 198
  ident: b0120
  article-title: Aggregate flexibility of thermostatically controlled loads
  publication-title: IEEE Trans Power Syst
– volume: 3
  start-page: 1055
  year: 2012
  end-page: 1062
  ident: b0015
  article-title: Application of model predictive control for active load management in a distributed power system with high wind penetration
  publication-title: IEEE Trans Smart Grid
– volume: 9
  start-page: 3844
  year: 2018
  end-page: 3856
  ident: b0090
  article-title: Hierarchical control of residential HVAC units for primary frequency regulation
  publication-title: IEEE Trans Smart Grid
– volume: 20
  start-page: 796
  year: 2012
  end-page: 803
  ident: b0055
  article-title: Model predictive control for the operation of building cooling systems
  publication-title: IEEE Trans Control Syst Technol
– volume: 4
  start-page: 1401
  year: 2013
  end-page: 1410
  ident: b0035
  article-title: MPC-based appliance scheduling for residential building energy management controller
  publication-title: IEEE Trans Smart Grid
– reference: Sturzenegger D, Gyalistras D, Semeraro V, Morari M, Smith RS. BRCM Matlab Toolbox: Model generation for model predictive building control. In: Proc Am Control Conf, Portland, OR, USA: American Automatic Control Council; 2014. p. 1063–9. doi:10.1109/ACC.2014.6858967.
– reference: Tesfatsion L, Battula S. Notes on the GridLAB-D household equivalent thermal parameter model. Iowa State Univ; 2020. p. 1–28. doi:http://www2.econ.iastate.edu/tesfatsi/GLDETPHouseholdModel.Notes.LTesfatsionSBattula.pdf.
– volume: 4
  start-page: 914
  year: 2013
  end-page: 921
  ident: b0085
  article-title: Design considerations of a centralized load controller using thermostatically controlled appliances for continuous regulation reserves
  publication-title: IEEE Trans Smart Grid
– volume: 277
  start-page: 115543
  year: 2020
  ident: b0100
  article-title: Peak load reduction and load shaping in HVAC and refrigeration systems in commercial buildings by using a novel lightweight dynamic priority-based control strategy ☆
  publication-title: Appl Energy
– reference: Martínez-Ballester S, Leon-Moya B, Vesson M, Gonzálvez-Maciá J, Corberán JM. Dynamic performance simulation of a household refrigerator with a quasi-steady approach. Int Refrig Air Cond Conf Purdue, Purdue; 2012. p. 8. doi:http://docs.lib.purdue.edu/iracc.
– volume: 31
  start-page: 1533
  year: 1985
  end-page: 1546
  ident: b0220
  article-title: Branch and bound experiments in convex nonlinear integer programming
  publication-title: Manage Sci
– reference: Santos GZ, Ronzoni AF, Hermes CJL. Quasi-steady-state simulation of the on-off behaviour of household refrigerators: a self-tuning approach 2019;2019–Augus:1871–8. doi:10.18462/iir.icr.2019.0076.
– reference: Chassin DP. New Residential Thermostat for Transactive Systems. PhD; thesis; 2014.
– reference: Korkas CD, Baldi S, Kosmatopoulos E. Chapter 9 – Grid-Connected Microgrids_ Demand Management via Distributed Control and Human-in-the-Loop Optimization _ Elsevier Enhanced Reader.pdf. In: Yahyaoui I, editor. Adv renew energies power technol. Biomass, Fuel Cells, Geotherm. Energies, Smart Grids, Elsevier Science, vol. 2; 2018. p. 315–44. doi:https://doi.org/10.1016/C2016-0-04919-7.
– reference: CasADi – Build efficient optimal control software, with minimal effort. n.d. <https://web.casadi.org/>.
– reference: Nghiem TX, Behl M, Mangharam R, Pappas GJ. Green Scheduling of control systems for peak demand reduction. IEEE Conf Decis Control (CDC 2011) 2011:3050–5. doi:10.1109/acc.2012.6315252.
– year: 2008
  ident: b0150
  article-title: GridLAB-D technical support document : residential end-use module version 1. 0
  publication-title: Pacific Northwest Natl Lab Tech Rep
– start-page: 1927
  year: 2010
  end-page: 1932
  ident: b0010
  article-title: Reducing peak electricity demand in building climate control using real-time pricing and model predictive control
  publication-title: Proc IEEE Conf Decis Control
– reference: Home, COIN-OR, BONMIN Users' Manual.
– start-page: 3050
  year: 2012
  end-page: 3055
  ident: b0110
  article-title: Scalable scheduling of building control systems for peak demand reduction
  publication-title: Proc Am Control Conf
– reference: Bonmin, https://github.com/coin-or/Bonmin.
– volume: 147
  start-page: 386
  year: 2015
  end-page: 395
  ident: b0185
  article-title: Transient simulation of a two-door frost-free refrigerator subjected to periodic door opening and evaporator frosting
  publication-title: Appl Energy
– year: 2010 2010.
  ident: b0050
  article-title: Energy efficient building climate control using stochastic model predictive control and weather predictions
  publication-title: Proc 2010 Am control conf ACC
– volume: 149
  start-page: 194
  year: 2015
  end-page: 203
  ident: b0070
  article-title: Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule
  publication-title: Appl Energy
– volume: 75
  start-page: 133
  year: 2014
  end-page: 148
  ident: b0140
  article-title: Peak shaving through real-time scheduling of household appliances
  publication-title: Energy Build
– reference: Gridlab-d – Residential module user’s guide n.d. <http://gridlab-d.shoutwiki.com/wiki/Residential_module_user%27s_guide>.
– volume: 38
  start-page: 723
  year: 2018
  end-page: 735
  ident: b0200
  article-title: Market and behavior driven predictive energy management for residential buildings
  publication-title: Sustain Cities Soc
– start-page: 171
  year: 2014
  end-page: 180
  ident: b0225
  article-title: Solving Mixed-Integer Quadratic Programming problems with IBM-CPLEX : a progress report
  publication-title: Proc Twenty-Sixth RAMP Symp
– year: 2019
  ident: b0030
  publication-title: Diehl MM. Model predictive control: Theory, Computation
– volume: 231
  start-page: 1246
  year: 2018
  end-page: 1258
  ident: b0075
  article-title: Automating occupant-building interaction via smart zoning of thermostatic loads: a switched self-tuning approach
  publication-title: Appl Energy
– start-page: 10
  year: 2010
  end-page: 17
  ident: b0130
  article-title: Real-time modeling and control of a cyber-physical energy system
  publication-title: First Int Work Energy Aware Des Anal Cyber Phys Syst
– volume: 86
  start-page: 415
  year: 2015
  end-page: 426
  ident: b0040
  article-title: MPC-based optimal scheduling of grid-connected low energy buildings with thermal energy storages
  publication-title: Energy Build
– volume: 16
  start-page: 1
  year: 2018
  ident: 10.1016/j.apenergy.2022.119591_b0005
  article-title: A model predictive control based peak shaving application of battery for a household with photovoltaic system in a rural distribution grid
  publication-title: Sustain Energy, Grids Netw
  doi: 10.1016/j.segan.2018.05.001
– year: 2019
  ident: 10.1016/j.apenergy.2022.119591_b0030
– ident: 10.1016/j.apenergy.2022.119591_b0205
– volume: 4
  start-page: 914
  year: 2013
  ident: 10.1016/j.apenergy.2022.119591_b0085
  article-title: Design considerations of a centralized load controller using thermostatically controlled appliances for continuous regulation reserves
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2012.2222944
– start-page: 10
  year: 2010
  ident: 10.1016/j.apenergy.2022.119591_b0130
  article-title: Real-time modeling and control of a cyber-physical energy system
  publication-title: First Int Work Energy Aware Des Anal Cyber Phys Syst
– volume: 6
  start-page: 324
  year: 2015
  ident: 10.1016/j.apenergy.2022.119591_b0170
  article-title: Optimal smart home energy management considering energy saving and a comfortable lifestyle
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2014.2349352
– volume: 20
  start-page: 796
  year: 2012
  ident: 10.1016/j.apenergy.2022.119591_b0055
  article-title: Model predictive control for the operation of building cooling systems
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2011.2124461
– ident: 10.1016/j.apenergy.2022.119591_b0165
– ident: 10.1016/j.apenergy.2022.119591_b0105
  doi: 10.1109/ACC.2012.6315252
– ident: 10.1016/j.apenergy.2022.119591_b0160
– volume: 10
  issue: 4
  year: 2018
  ident: 10.1016/j.apenergy.2022.119591_b0195
  article-title: A supervised event-based non-intrusive load monitoring for non-linear appliances
  publication-title: Sustainability
  doi: 10.3390/su10041001
– volume: 86
  start-page: 415
  year: 2015
  ident: 10.1016/j.apenergy.2022.119591_b0040
  article-title: MPC-based optimal scheduling of grid-connected low energy buildings with thermal energy storages
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.10.019
– volume: 30
  start-page: 189
  year: 2015
  ident: 10.1016/j.apenergy.2022.119591_b0120
  article-title: Aggregate flexibility of thermostatically controlled loads
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2014.2328865
– year: 2010
  ident: 10.1016/j.apenergy.2022.119591_b0050
  article-title: Energy efficient building climate control using stochastic model predictive control and weather predictions
– volume: 277
  start-page: 115543
  year: 2020
  ident: 10.1016/j.apenergy.2022.119591_b0100
  article-title: Peak load reduction and load shaping in HVAC and refrigeration systems in commercial buildings by using a novel lightweight dynamic priority-based control strategy ☆
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115543
– volume: 75
  start-page: 133
  year: 2014
  ident: 10.1016/j.apenergy.2022.119591_b0140
  article-title: Peak shaving through real-time scheduling of household appliances
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.02.013
– year: 2008
  ident: 10.1016/j.apenergy.2022.119591_b0150
  article-title: GridLAB-D technical support document : residential end-use module version 1. 0
  publication-title: Pacific Northwest Natl Lab Tech Rep
– start-page: 3050
  year: 2012
  ident: 10.1016/j.apenergy.2022.119591_b0110
  article-title: Scalable scheduling of building control systems for peak demand reduction
  publication-title: Proc Am Control Conf
– volume: 38
  start-page: 723
  year: 2018
  ident: 10.1016/j.apenergy.2022.119591_b0200
  article-title: Market and behavior driven predictive energy management for residential buildings
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2018.01.030
– ident: 10.1016/j.apenergy.2022.119591_b0210
– year: 2012
  ident: 10.1016/j.apenergy.2022.119591_b0135
  article-title: Feedback scheduling of real-time physical systems with integrator dynamics
  publication-title: IEEE Int Conf Emerg Technol Fact Autom ETFA
– volume: 230
  start-page: 627
  year: 2018
  ident: 10.1016/j.apenergy.2022.119591_b0060
  article-title: Model predictive control for building loads connected with a residential distribution grid
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.08.051
– ident: 10.1016/j.apenergy.2022.119591_b0145
– volume: 231
  start-page: 1246
  year: 2018
  ident: 10.1016/j.apenergy.2022.119591_b0075
  article-title: Automating occupant-building interaction via smart zoning of thermostatic loads: a switched self-tuning approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.09.188
– ident: 10.1016/j.apenergy.2022.119591_b0155
  doi: 10.1109/ACC.2014.6858967
– volume: 28
  start-page: 4655
  year: 2013
  ident: 10.1016/j.apenergy.2022.119591_b0230
  article-title: Aggregated modeling and control of air conditioning loads for demand response
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2266121
– volume: 4
  start-page: 1401
  year: 2013
  ident: 10.1016/j.apenergy.2022.119591_b0035
  article-title: MPC-based appliance scheduling for residential building energy management controller
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2013.2265239
– volume: 9
  start-page: 3844
  year: 2018
  ident: 10.1016/j.apenergy.2022.119591_b0090
  article-title: Hierarchical control of residential HVAC units for primary frequency regulation
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2766880
– ident: 10.1016/j.apenergy.2022.119591_b0180
– volume: 3
  start-page: 2166
  year: 2012
  ident: 10.1016/j.apenergy.2022.119591_b0025
  article-title: An algorithm for intelligent home energy management and demand response analysis
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2012.2201182
– start-page: 1927
  year: 2010
  ident: 10.1016/j.apenergy.2022.119591_b0010
  article-title: Reducing peak electricity demand in building climate control using real-time pricing and model predictive control
  publication-title: Proc IEEE Conf Decis Control
– volume: 12
  year: 2019
  ident: 10.1016/j.apenergy.2022.119591_b0115
  article-title: Aggregate control strategy for thermostatically controlled loads with demand response
  publication-title: Energies
– volume: 3
  start-page: 1055
  year: 2012
  ident: 10.1016/j.apenergy.2022.119591_b0015
  article-title: Application of model predictive control for active load management in a distributed power system with high wind penetration
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2011.2177282
– volume: 147
  start-page: 386
  year: 2015
  ident: 10.1016/j.apenergy.2022.119591_b0185
  article-title: Transient simulation of a two-door frost-free refrigerator subjected to periodic door opening and evaporator frosting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.01.089
– ident: 10.1016/j.apenergy.2022.119591_b0215
– volume: 298
  start-page: 117159
  year: 2021
  ident: 10.1016/j.apenergy.2022.119591_b0080
  article-title: An integrated smart home energy management model based on a pyramid taxonomy for residential houses with photovoltaic-battery systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117159
– volume: 195
  start-page: 184
  year: 2017
  ident: 10.1016/j.apenergy.2022.119591_b0065
  article-title: Reduction of heat pump induced peak electricity use and required generation capacity through thermal energy storage and demand response
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.055
– ident: 10.1016/j.apenergy.2022.119591_b0190
– volume: 3053
  start-page: 4133
  year: 2020
  ident: 10.1016/j.apenergy.2022.119591_b0095
  article-title: A priority-based control strategy and performance bound for aggregated HVAC-based load shaping
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.2977203
– volume: 4
  start-page: 1391
  year: 2013
  ident: 10.1016/j.apenergy.2022.119591_b0020
  article-title: An optimal power scheduling method for demand response in home energy management system
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2013.2251018
– volume: 149
  start-page: 194
  year: 2015
  ident: 10.1016/j.apenergy.2022.119591_b0070
  article-title: Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.01.145
– volume: 31
  start-page: 1533
  year: 1985
  ident: 10.1016/j.apenergy.2022.119591_b0220
  article-title: Branch and bound experiments in convex nonlinear integer programming
  publication-title: Manage Sci
  doi: 10.1287/mnsc.31.12.1533
– ident: 10.1016/j.apenergy.2022.119591_b0175
– ident: 10.1016/j.apenergy.2022.119591_b0125
  doi: 10.1016/B978-0-12-813185-5.00025-5
– volume: 32
  start-page: 338
  year: 2017
  ident: 10.1016/j.apenergy.2022.119591_b0045
  article-title: Scheduling deferrable appliances and energy resources of a smart home applying multi-time scale stochastic model predictive control
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2017.04.006
– start-page: 171
  year: 2014
  ident: 10.1016/j.apenergy.2022.119591_b0225
  article-title: Solving Mixed-Integer Quadratic Programming problems with IBM-CPLEX : a progress report
  publication-title: Proc Twenty-Sixth RAMP Symp
SSID ssj0002120
Score 2.4323986
Snippet •A bottom-up intra-hour proactive scheduling for household peak avoiding.•Physic-based modeling and simulation of thermal appliances.•MPC controller...
Residential-level peak shaving is beneficial for the supply–demand balance of buildings with a limited power capacity of renewable energy sources like...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119591
SubjectTerms Bottom-up
electricity
energy
markets
Model predictive control
Peak avoidance
Proactive scheduling
quadratic programming
solar energy
Thermal appliances
Title A bottom-up intra-hour proactive scheduling of thermal appliances for household peak avoiding based on model predictive control
URI https://dx.doi.org/10.1016/j.apenergy.2022.119591
https://www.proquest.com/docview/2718288276
Volume 323
WOSCitedRecordID wos000841966600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG0NCQdyQBCISFjUSNwsD057P46iYROKOARpxMVqt9vEYWJbsyU3_oLvTVUvtglLyIGLNfJMtZd60_WquxZCXoVoNaI8dX3ueW7AAunysMSg8QL4uixEWiSq2UR8fJzMZumn0eiHzYXZzOO6Ti4v0_a_qhrOgbIxdfYW6u4GhRPwGZQOR1A7HP9J8RMHu4PB1LdusRjEgrunIOao1CkVJwT-LNiXuQl3RgJ4jgUDkI4iBFSBBgdklhK3ppxW8m8O3zSVSn9Bq1fgDoNqoYMlBopKD2uC3ods11JcqRIM-zVqqSeYL6drbgyn2sTSaSIV76FmFrPfNvXXJUrZbz6u1QrvrOLNhayGKxfg9NoYuC5jy4tc9OCGs7HP_MF8igXpdDevX6Z6vepwNuatfogxXmLcC_xcW_uazesiEW2Q21lmx8lwnEyPc4dsszhMYbbcnryfzj50Np6Zgp_2CQa557-_oz_RnmsEQLGakwfkvnFH6ETD6CEZyXqX7AyKVO6SvWmfCwk_NcZg-Yh8n9AOabRHGu2QRnuk0aakBmm0RxoFpNEOaRSRRi3SqEIabWqqkEZ7pFGDtMfk85vpydE71_TzcIXvJStXCnCO_CDnHg-liLxU8FJymYIhEEUQ5kDNQ8l5IoOoZBKoaX7o5eCOsEJwv2S5v0e26qaWTwjNQ5HzKPRjxoEC54dpkoBpwkZcQVH40tsnoX3dmTDF7rHnyjz7u8L3yetOrtXlXm6USK02M0NaNRnNAKg3yr606s9gVsetOl5LeOsZA8rIwPmNo4Nb39FTcq__tz0jW6vFWj4nd8VmVS0XLwySrwAxws7x
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bottom-up+intra-hour+proactive+scheduling+of+thermal+appliances+for+household+peak+avoiding+based+on+model+predictive+control&rft.jtitle=Applied+energy&rft.au=Zheng%2C+Zhuang&rft.au=Pan%2C+Jia&rft.au=Huang%2C+Gongsheng&rft.au=Luo%2C+Xiaowei&rft.date=2022-10-01&rft.issn=0306-2619&rft.volume=323&rft.spage=119591&rft_id=info:doi/10.1016%2Fj.apenergy.2022.119591&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apenergy_2022_119591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon