Deep neurocomputational fusion for ASD diagnosis using multi-domain EEG analysis

Autism spectrum disorder (ASD) presents significant challenges in early detection due to its heterogeneous nature and the subtlety of neurophysiological variations. Electroencephalography (EEG) has emerged as a promising tool for ASD diagnosis, offering insights into intricate neurophysiological sig...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 641; s. 130353
Hlavní autoři: Rasool, Abdur, Aslam, Saba, Xu, Yongjie, Wang, Yishan, Pan, Yi, Chen, Weiyang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 07.08.2025
Témata:
ISSN:0925-2312
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Autism spectrum disorder (ASD) presents significant challenges in early detection due to its heterogeneous nature and the subtlety of neurophysiological variations. Electroencephalography (EEG) has emerged as a promising tool for ASD diagnosis, offering insights into intricate neurophysiological signal dynamics. However, existing computational EEG analysis techniques often struggle to effectively capture complex ASD-related neural activity patterns. To address these limitations, this study proposes an Encoder-Ensemble Fusion Model (EEFM), designed to enhance EEG-based ASD classification through advanced neurocomputational modeling. EEFM integrates multi-domain EEG features with a sophisticated fusion network, initially extracting a diverse range of time and frequency-domain characteristics. This model enables the identification of nuanced and heterogeneous ASD-specific neural activity, leveraging ensemble learning and autoencoder architectures to uncover complex relationships within the data. Specifically, an LSTM (Long Short-Term Memory)-autoencoder models temporal and spatial dependencies, followed by an XGBoost Regressor for nonlinear EEG signal interpretation and a linear regression model for decision boundary refinement. The proposed model has been evaluated on a dataset focusing on sex-specific EEG variations in ASD and Typically Developing (TD) subjects. By incorporating EEG-based neurophysiological biomarkers, EEFM achieved 93% accuracy in distinguishing ASD from TD individuals. This model enhances sensitivity to subtle ASD-related abnormalities while addressing challenges in data heterogeneity, scarcity, and generalizability, contributing to advancements in neurocomputing methodologies for EEG-based ASD diagnosis.
AbstractList Autism spectrum disorder (ASD) presents significant challenges in early detection due to its heterogeneous nature and the subtlety of neurophysiological variations. Electroencephalography (EEG) has emerged as a promising tool for ASD diagnosis, offering insights into intricate neurophysiological signal dynamics. However, existing computational EEG analysis techniques often struggle to effectively capture complex ASD-related neural activity patterns. To address these limitations, this study proposes an Encoder-Ensemble Fusion Model (EEFM), designed to enhance EEG-based ASD classification through advanced neurocomputational modeling. EEFM integrates multi-domain EEG features with a sophisticated fusion network, initially extracting a diverse range of time and frequency-domain characteristics. This model enables the identification of nuanced and heterogeneous ASD-specific neural activity, leveraging ensemble learning and autoencoder architectures to uncover complex relationships within the data. Specifically, an LSTM (Long Short-Term Memory)-autoencoder models temporal and spatial dependencies, followed by an XGBoost Regressor for nonlinear EEG signal interpretation and a linear regression model for decision boundary refinement. The proposed model has been evaluated on a dataset focusing on sex-specific EEG variations in ASD and Typically Developing (TD) subjects. By incorporating EEG-based neurophysiological biomarkers, EEFM achieved 93% accuracy in distinguishing ASD from TD individuals. This model enhances sensitivity to subtle ASD-related abnormalities while addressing challenges in data heterogeneity, scarcity, and generalizability, contributing to advancements in neurocomputing methodologies for EEG-based ASD diagnosis.
ArticleNumber 130353
Author Aslam, Saba
Rasool, Abdur
Pan, Yi
Chen, Weiyang
Xu, Yongjie
Wang, Yishan
Author_xml – sequence: 1
  givenname: Abdur
  orcidid: 0000-0001-5334-9001
  surname: Rasool
  fullname: Rasool, Abdur
  organization: Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, 96822, HI, USA
– sequence: 2
  givenname: Saba
  orcidid: 0000-0001-7681-4324
  surname: Aslam
  fullname: Aslam, Saba
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
– sequence: 3
  givenname: Yongjie
  orcidid: 0000-0002-4270-1855
  surname: Xu
  fullname: Xu, Yongjie
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
– sequence: 4
  givenname: Yishan
  orcidid: 0000-0002-6674-8180
  surname: Wang
  fullname: Wang, Yishan
  email: ys.wang@siat.ac.cn
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
– sequence: 5
  givenname: Yi
  orcidid: 0000-0002-2766-3096
  surname: Pan
  fullname: Pan, Yi
  email: yi.pan@siat.ac.cn
  organization: Shenzhen Key Laboratory of Intelligent Bioinformatics, Shenzhen Institutes of Advanced Technology, Shenzhen, 518055, Guangdong, China
– sequence: 6
  givenname: Weiyang
  orcidid: 0000-0001-8430-7381
  surname: Chen
  fullname: Chen, Weiyang
  organization: School of Cyber Science and Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
BookMark eNqFkMFOwzAMQHMYEhvwBxzyAy1Js6YrB6RpGwNpEkjAOQquM2Vqkylpkfb3ZConDnCyZftZ9puRifMOCbnlLOeMy7tD7nAA3-UFK8qcCyZKMSFTVhdlVgheXJJZjAfGeMWLekpe14hHmpDgE3Qcet1b73RLzRBTQo0PdPm2po3Ve-ejjTTV3Z52Q9vbrPGdto5uNluqE3RK_WtyYXQb8eYnXpGPx8376inbvWyfV8tdBoIt-kyyRiJUBmTFQde1RGFMiXMGC2C4KMq6Aq6l4AJ4mqoNCPMpy6YwkpmqYuKK3I97IfgYAxoFdjy-D9q2ijN19qEOavShzj7U6CPB81_wMdhOh9N_2MOIYXrsy2JQESw6wMYGhF413v694BvaIoGT
CitedBy_id crossref_primary_10_3390_diagnostics15172132
crossref_primary_10_3390_brainsci15070684
crossref_primary_10_3390_neurosci6030080
crossref_primary_10_3390_app15169009
Cites_doi 10.1016/j.bbe.2020.02.002
10.1016/j.conb.2018.06.013
10.1177/1550059420982424
10.1109/RBME.2020.2969915
10.1016/j.rasd.2020.101671
10.1016/j.neucom.2024.129315
10.1016/j.cmpb.2024.108492
10.1515/revneuro-2020-0043
10.1109/TNSRE.2022.3188564
10.3389/fninf.2019.00070
10.3390/ijms21134726
10.1007/s00500-021-05877-0
10.1155/2020/6925107
10.1016/j.neucom.2024.128644
10.1016/j.neucom.2020.05.126
10.1080/03036758.2020.1780274
10.1007/s00521-022-07822-0
10.1016/j.neucom.2023.126262
10.1097/WNP.0000000000000510
10.1016/j.biopsych.2020.02.015
10.1016/j.neucom.2021.04.009
10.1088/1741-2552/aab2f2
10.3390/app7121239
10.1016/j.neuroimage.2022.119774
10.1016/j.neucom.2024.129203
10.1016/j.compbiomed.2024.109558
10.1016/j.cmpb.2024.108196
10.1016/j.eswa.2023.120391
10.3389/fninf.2019.00032
10.1016/j.compbiomed.2021.104548
10.1016/j.cogr.2021.04.001
10.1088/1741-2552/ad8e86
10.3390/app10217453
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2025.130353
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_neucom_2025_130353
S0925231225010252
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
AAYWO
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
WUQ
XPP
~HD
ID FETCH-LOGICAL-c308t-60d6ec7fc671ca996e3ff5e40c8c0e82597c1a6313c17fc9fc3fb65d2f60f7703
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001502116400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 06:55:23 EST 2025
Tue Nov 18 22:18:32 EST 2025
Sat Jun 28 18:17:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Fusion model
Neurocomputational diagnostics
Autism spectrum disorder
EEG analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c308t-60d6ec7fc671ca996e3ff5e40c8c0e82597c1a6313c17fc9fc3fb65d2f60f7703
ORCID 0000-0001-7681-4324
0000-0002-6674-8180
0000-0002-2766-3096
0000-0001-8430-7381
0000-0001-5334-9001
0000-0002-4270-1855
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2025_130353
crossref_primary_10_1016_j_neucom_2025_130353
elsevier_sciencedirect_doi_10_1016_j_neucom_2025_130353
PublicationCentury 2000
PublicationDate 2025-08-07
PublicationDateYYYYMMDD 2025-08-07
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-07
  day: 07
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ul Amin, Kim, Jung, Seo, Park (b38) 2024; 6
Al-Nafjan, Hosny, Al-Ohali, Al-Wabil (b25) 2017; 7
Genovese, Butler (b13) 2020; 21
Mao, Fathurrahman, Lee, Chang (b26) 2020; 1456
Grossi, Valbusa, Buscema (b36) 2021; 52
Dong, Chen, Zhang, Ke, Li (b30) 2021; 449
Aboyeji, Ahmad, Wang, Chen, Yao, Li, Tong, Siu, Zhao, Chen (b3) 2025; 185
Wadhera, Kakkar, Rani (b22) 2021
Eslami, Mirjalili, Fong, Laird, Saeed (b34) 2019; 13
Nogay, Adeli (b14) 2020; 31
Tan, Zhang, Wang, Chen, Li, Gao, Zeng (b40) 2025; 622
Xu, Yan, Deng, Yang, Liu, Wang, Yuan (b16) 2024; 610
Wang, Wang (b19) 2021; 1
Mansvelder, Verhoog, Goriounova (b12) 2019; 54
Lotte, Bougrain, Cichocki, Clerc, Congedo, Rakotomamonjy, Yger (b23) 2018; 15
Ives-Deliperi, Butler (b7) 2018; 35
Adhikari, Shrestha, Mishra, Singh, Timalsina (b29) 2018
Baygin, Dogan, Tuncer, Barua, Faust, Arunkumar, Abdulhay, Palmer, Acharya (b37) 2021; 134
Xu, Yu, Li, Liu, Li, Wang (b28) 2024; 250
Niso, Romero, Moreau, Araujo, Krol (b8) 2023; 269
Chen, Lu, Xie, Shang (b9) 2020; 2020
Bunterngchit, Wang, Su, Wang, Liu, Hou (b5) 2024; 21
Guimarães, Araujo, Araujo, Batista, de Campos Souza (b27) 2019
Vidivelli, Padmakumari, Shanthi (b42) 2025; 260
Zhang, Zhang, Chen, Jiang, Li, Dong, Feng, Yao, Li, Xu (b6) 2022; 30
Amin, Hussain, Kim, Seo (b41) 2023; 228
Torres, Clarkson, Hauschild, Luhmann, Lerner, Riccardi (b31) 2022; 7
Albahri, Hamid, Albahri (b18) 2023; 35
Soufineyestani, Dowling, Khan (b4) 2020; 10
McCarty, Frye (b17) 2020; 35
Rukhsar, Tiwari (b20) 2025; 620
Khosla, Chand (b21) 2020; 40
Kirk, Sumner (b11) 2021; 51
Vidivelli, Padmakumari, Shanthi (b15) 2025; 260
Pender, Fearon, Heron, Mandy (b33) 2020; 79
Zhou, Li, Li, Ji, Shi, Zheng, Zhang, Chen, Cheng (b2) 2023; 544
Hosseini, Hosseini, Ahi (b24) 2020; 14
Fan, Markram (b1) 2019; 13
Lombardi, Shriki, de Arcangelis (b10) 2021; 461
Feczko, Fair (b32) 2020; 88
Souza, Guimaraes, Araujo, Lughofer (b35) 2021; 25
Saba, Abdur, Hongyan, Xiaoli (b39) 2024
Pender (10.1016/j.neucom.2025.130353_b33) 2020; 79
Nogay (10.1016/j.neucom.2025.130353_b14) 2020; 31
Wang (10.1016/j.neucom.2025.130353_b19) 2021; 1
Khosla (10.1016/j.neucom.2025.130353_b21) 2020; 40
Xu (10.1016/j.neucom.2025.130353_b16) 2024; 610
Bunterngchit (10.1016/j.neucom.2025.130353_b5) 2024; 21
Chen (10.1016/j.neucom.2025.130353_b9) 2020; 2020
Kirk (10.1016/j.neucom.2025.130353_b11) 2021; 51
Mansvelder (10.1016/j.neucom.2025.130353_b12) 2019; 54
Feczko (10.1016/j.neucom.2025.130353_b32) 2020; 88
Zhou (10.1016/j.neucom.2025.130353_b2) 2023; 544
Zhang (10.1016/j.neucom.2025.130353_b6) 2022; 30
Niso (10.1016/j.neucom.2025.130353_b8) 2023; 269
Grossi (10.1016/j.neucom.2025.130353_b36) 2021; 52
Ul Amin (10.1016/j.neucom.2025.130353_b38) 2024; 6
Xu (10.1016/j.neucom.2025.130353_b28) 2024; 250
Soufineyestani (10.1016/j.neucom.2025.130353_b4) 2020; 10
Rukhsar (10.1016/j.neucom.2025.130353_b20) 2025; 620
Baygin (10.1016/j.neucom.2025.130353_b37) 2021; 134
Lombardi (10.1016/j.neucom.2025.130353_b10) 2021; 461
Aboyeji (10.1016/j.neucom.2025.130353_b3) 2025; 185
Vidivelli (10.1016/j.neucom.2025.130353_b42) 2025; 260
Lotte (10.1016/j.neucom.2025.130353_b23) 2018; 15
Albahri (10.1016/j.neucom.2025.130353_b18) 2023; 35
Hosseini (10.1016/j.neucom.2025.130353_b24) 2020; 14
Ives-Deliperi (10.1016/j.neucom.2025.130353_b7) 2018; 35
Eslami (10.1016/j.neucom.2025.130353_b34) 2019; 13
Genovese (10.1016/j.neucom.2025.130353_b13) 2020; 21
Wadhera (10.1016/j.neucom.2025.130353_b22) 2021
Al-Nafjan (10.1016/j.neucom.2025.130353_b25) 2017; 7
Adhikari (10.1016/j.neucom.2025.130353_b29) 2018
Dong (10.1016/j.neucom.2025.130353_b30) 2021; 449
Saba (10.1016/j.neucom.2025.130353_b39) 2024
Tan (10.1016/j.neucom.2025.130353_b40) 2025; 622
Amin (10.1016/j.neucom.2025.130353_b41) 2023; 228
Mao (10.1016/j.neucom.2025.130353_b26) 2020; 1456
McCarty (10.1016/j.neucom.2025.130353_b17) 2020; 35
Souza (10.1016/j.neucom.2025.130353_b35) 2021; 25
Torres (10.1016/j.neucom.2025.130353_b31) 2022; 7
Vidivelli (10.1016/j.neucom.2025.130353_b15) 2025; 260
Guimarães (10.1016/j.neucom.2025.130353_b27) 2019
Fan (10.1016/j.neucom.2025.130353_b1) 2019; 13
References_xml – volume: 449
  start-page: 136
  year: 2021
  end-page: 145
  ident: b30
  article-title: Subject sensitive EEG discrimination with fast reconstructable CNN driven by reinforcement learning: A case study of ASD evaluation
  publication-title: Neurocomputing
– volume: 620
  year: 2025
  ident: b20
  article-title: ARNN: Attentive recurrent neural network for multi-channel EEG signals to identify epileptic seizures
  publication-title: Neurocomputing
– volume: 79
  year: 2020
  ident: b33
  article-title: The longitudinal heterogeneity of autistic traits: A systematic review
  publication-title: Res. Autism Spectr. Disord.
– volume: 35
  start-page: 504
  year: 2018
  end-page: 509
  ident: b7
  article-title: Relationship between EEG electrode and functional cortex in the international 10 to 20 system
  publication-title: J. Clin. Neurophysiol.
– volume: 610
  year: 2024
  ident: b16
  article-title: EEG-based epileptic seizure detection using deep learning techniques: A survey
  publication-title: Neurocomputing
– volume: 6
  year: 2024
  ident: b38
  article-title: Video anomaly detection utilizing efficient spatiotemporal feature fusion with 3D convolutions and long short-term memory modules
  publication-title: Adv. Intell. Syst.
– volume: 21
  start-page: 4726
  year: 2020
  ident: b13
  article-title: Clinical assessment, genetics, and treatment approaches in autism spectrum disorder (ASD)
  publication-title: Int. J. Mol. Sci.
– start-page: 279
  year: 2021
  end-page: 298
  ident: b22
  article-title: Behavioral modeling using deep neural network framework for ASD diagnosis and prognosis
  publication-title: Emerg. Technol. Heal.: Internet Things Deep. Learn. Model.
– volume: 228
  year: 2023
  ident: b41
  article-title: Deep learning based active learning technique for data annotation and improve the overall performance of classification models
  publication-title: Expert Syst. Appl.
– volume: 13
  start-page: 70
  year: 2019
  ident: b34
  article-title: ASD-DiagNet: a hybrid learning approach for detection of autism spectrum disorder using fMRI data
  publication-title: Front. Neuroinform.
– volume: 1456
  year: 2020
  ident: b26
  article-title: EEG dataset classification using CNN method
  publication-title: J. Phys.: Conf. Ser.
– year: 2024
  ident: b39
  article-title: CEL: A continual learning model for disease outbreak prediction by leveraging domain adaptation via elastic weight consolidation
– volume: 250
  year: 2024
  ident: b28
  article-title: Autism spectrum disorder diagnosis with EEG signals using time series maps of brain functional connectivity and a combined CNN–LSTM model
  publication-title: Comput. Methods Programs Biomed.
– volume: 622
  year: 2025
  ident: b40
  article-title: SEDA-EEG: A semi-supervised emotion recognition network with domain adaptation for cross-subject EEG analysis
  publication-title: Neurocomputing
– volume: 25
  start-page: 9163
  year: 2021
  end-page: 9183
  ident: b35
  article-title: An intelligent Bayesian hybrid approach to help autism diagnosis
  publication-title: Soft Comput.
– volume: 7
  start-page: 1239
  year: 2017
  ident: b25
  article-title: Review and classification of emotion recognition based on EEG brain-computer interface system research: a systematic review
  publication-title: Appl. Sci.
– volume: 544
  year: 2023
  ident: b2
  article-title: Progressive graph convolution network for EEG emotion recognition
  publication-title: Neurocomputing
– volume: 30
  start-page: 1898
  year: 2022
  end-page: 1907
  ident: b6
  article-title: Predicting the symptom severity in autism spectrum disorder based on EEG metrics
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 134
  year: 2021
  ident: b37
  article-title: Automated ASD detection using hybrid deep lightweight features extracted from EEG signals
  publication-title: Comput. Biol. Med.
– volume: 7
  start-page: 688
  year: 2022
  end-page: 695
  ident: b31
  article-title: Facial emotions are accurately encoded in the neural signal of those with autism spectrum disorder: A deep learning approach
  publication-title: Biol. Psychiatry: Cogn. Neurosci. Neuroimaging
– volume: 2020
  year: 2020
  ident: b9
  article-title: Anomaly detection in EEG signals: a case study on similarity measure
  publication-title: Comput. Intell. Neurosci.
– volume: 54
  start-page: 186
  year: 2019
  end-page: 193
  ident: b12
  article-title: Synaptic plasticity in human cortical circuits: cellular mechanisms of learning and memory in the human brain?
  publication-title: Curr. Opin. Neurobiol.
– volume: 35
  year: 2020
  ident: b17
  article-title: Early detection and diagnosis of autism spectrum disorder: Why is it so difficult?
  publication-title: Seminars in Pediatric Neurology
– volume: 31
  start-page: 825
  year: 2020
  end-page: 841
  ident: b14
  article-title: Machine learning (ML) for the diagnosis of autism spectrum disorder (ASD) using brain imaging
  publication-title: Rev. Neurosci.
– volume: 15
  year: 2018
  ident: b23
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update
  publication-title: J. Neural Eng.
– volume: 35
  start-page: 921
  year: 2023
  end-page: 947
  ident: b18
  article-title: Early automated prediction model for the diagnosis and detection of children with autism spectrum disorders based on effective sociodemographic and family characteristic features
  publication-title: Neural Comput. Appl.
– start-page: 218
  year: 2018
  end-page: 223
  ident: b29
  article-title: EEG based directional signal classification using RNN variants
  publication-title: 2018 IEEE 3rd International Conference on Computing, Communication and Security
– volume: 185
  year: 2025
  ident: b3
  article-title: DCSENets: Interpretable deep learning for patient-independent seizure classification using enhanced EEG-based spectrogram visualization
  publication-title: Comput. Biol. Med.
– volume: 21
  year: 2024
  ident: b5
  article-title: Temporal attention fusion network with custom loss function for EEG–fNIRS classification
  publication-title: J. Neural Eng.
– volume: 260
  year: 2025
  ident: b42
  article-title: Multimodal autism detection: Deep hybrid model with improved feature level fusion
  publication-title: Comput. Methods Programs Biomed.
– volume: 1
  start-page: 29
  year: 2021
  end-page: 40
  ident: b19
  article-title: Review of the emotional feature extraction and classification using EEG signals
  publication-title: Cogn. Robot.
– volume: 40
  start-page: 649
  year: 2020
  end-page: 690
  ident: b21
  article-title: A comparative analysis of signal processing and classification methods for different applications based on EEG signals
  publication-title: Biocybern. Biomed. Eng.
– volume: 51
  start-page: 24
  year: 2021
  end-page: 40
  ident: b11
  article-title: Human EEG and the mechanisms of memory: investigating long-term potentiation (LTP) in sensory-evoked potentials
  publication-title: J. R. Soc. N. Z.
– volume: 14
  start-page: 204
  year: 2020
  end-page: 218
  ident: b24
  article-title: A review on machine learning for EEG signal processing in bioengineering
  publication-title: IEEE Rev. Biomed. Eng.
– start-page: 401
  year: 2019
  end-page: 412
  ident: b27
  article-title: A hybrid model based on fuzzy rules to act on the diagnosed of autism in adults
  publication-title: IFIP International Conference on Artificial Intelligence Applications and Innovations
– volume: 461
  start-page: 657
  year: 2021
  end-page: 666
  ident: b10
  article-title: Long-range temporal correlations in the broadband resting state activity of the human brain revealed by neuronal avalanches
  publication-title: Neurocomputing
– volume: 269
  year: 2023
  ident: b8
  article-title: Wireless EEG: A survey of systems and studies
  publication-title: NeuroImage
– volume: 260
  year: 2025
  ident: b15
  article-title: Multimodal autism detection: Deep hybrid model with improved feature level fusion
  publication-title: Comput. Methods Programs Biomed.
– volume: 88
  start-page: 9
  year: 2020
  end-page: 17
  ident: b32
  article-title: Methods and challenges for assessing heterogeneity
  publication-title: Biol. Psychiatry
– volume: 52
  start-page: 330
  year: 2021
  end-page: 337
  ident: b36
  article-title: Detection of an autism EEG signature from only two EEG channels through features extraction and advanced machine learning analysis
  publication-title: Clin. EEG Neurosci.
– volume: 10
  start-page: 7453
  year: 2020
  ident: b4
  article-title: Electroencephalography (EEG) technology applications and available devices
  publication-title: Appl. Sci.
– volume: 13
  start-page: 32
  year: 2019
  ident: b1
  article-title: A brief history of simulation neuroscience
  publication-title: Front. Neuroinformatics
– volume: 40
  start-page: 649
  issue: 2
  year: 2020
  ident: 10.1016/j.neucom.2025.130353_b21
  article-title: A comparative analysis of signal processing and classification methods for different applications based on EEG signals
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.02.002
– volume: 54
  start-page: 186
  year: 2019
  ident: 10.1016/j.neucom.2025.130353_b12
  article-title: Synaptic plasticity in human cortical circuits: cellular mechanisms of learning and memory in the human brain?
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2018.06.013
– volume: 52
  start-page: 330
  issue: 5
  year: 2021
  ident: 10.1016/j.neucom.2025.130353_b36
  article-title: Detection of an autism EEG signature from only two EEG channels through features extraction and advanced machine learning analysis
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/1550059420982424
– volume: 14
  start-page: 204
  year: 2020
  ident: 10.1016/j.neucom.2025.130353_b24
  article-title: A review on machine learning for EEG signal processing in bioengineering
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2020.2969915
– start-page: 279
  year: 2021
  ident: 10.1016/j.neucom.2025.130353_b22
  article-title: Behavioral modeling using deep neural network framework for ASD diagnosis and prognosis
  publication-title: Emerg. Technol. Heal.: Internet Things Deep. Learn. Model.
– volume: 35
  year: 2020
  ident: 10.1016/j.neucom.2025.130353_b17
  article-title: Early detection and diagnosis of autism spectrum disorder: Why is it so difficult?
– volume: 79
  year: 2020
  ident: 10.1016/j.neucom.2025.130353_b33
  article-title: The longitudinal heterogeneity of autistic traits: A systematic review
  publication-title: Res. Autism Spectr. Disord.
  doi: 10.1016/j.rasd.2020.101671
– volume: 622
  year: 2025
  ident: 10.1016/j.neucom.2025.130353_b40
  article-title: SEDA-EEG: A semi-supervised emotion recognition network with domain adaptation for cross-subject EEG analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.129315
– volume: 260
  year: 2025
  ident: 10.1016/j.neucom.2025.130353_b42
  article-title: Multimodal autism detection: Deep hybrid model with improved feature level fusion
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2024.108492
– volume: 31
  start-page: 825
  issue: 8
  year: 2020
  ident: 10.1016/j.neucom.2025.130353_b14
  article-title: Machine learning (ML) for the diagnosis of autism spectrum disorder (ASD) using brain imaging
  publication-title: Rev. Neurosci.
  doi: 10.1515/revneuro-2020-0043
– volume: 30
  start-page: 1898
  year: 2022
  ident: 10.1016/j.neucom.2025.130353_b6
  article-title: Predicting the symptom severity in autism spectrum disorder based on EEG metrics
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3188564
– volume: 13
  start-page: 70
  year: 2019
  ident: 10.1016/j.neucom.2025.130353_b34
  article-title: ASD-DiagNet: a hybrid learning approach for detection of autism spectrum disorder using fMRI data
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2019.00070
– volume: 1456
  issue: 1
  year: 2020
  ident: 10.1016/j.neucom.2025.130353_b26
  article-title: EEG dataset classification using CNN method
  publication-title: J. Phys.: Conf. Ser.
– volume: 21
  start-page: 4726
  issue: 13
  year: 2020
  ident: 10.1016/j.neucom.2025.130353_b13
  article-title: Clinical assessment, genetics, and treatment approaches in autism spectrum disorder (ASD)
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21134726
– volume: 7
  start-page: 688
  issue: 7
  year: 2022
  ident: 10.1016/j.neucom.2025.130353_b31
  article-title: Facial emotions are accurately encoded in the neural signal of those with autism spectrum disorder: A deep learning approach
  publication-title: Biol. Psychiatry: Cogn. Neurosci. Neuroimaging
– volume: 25
  start-page: 9163
  issue: 14
  year: 2021
  ident: 10.1016/j.neucom.2025.130353_b35
  article-title: An intelligent Bayesian hybrid approach to help autism diagnosis
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-05877-0
– volume: 2020
  year: 2020
  ident: 10.1016/j.neucom.2025.130353_b9
  article-title: Anomaly detection in EEG signals: a case study on similarity measure
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2020/6925107
– volume: 610
  year: 2024
  ident: 10.1016/j.neucom.2025.130353_b16
  article-title: EEG-based epileptic seizure detection using deep learning techniques: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.128644
– volume: 461
  start-page: 657
  year: 2021
  ident: 10.1016/j.neucom.2025.130353_b10
  article-title: Long-range temporal correlations in the broadband resting state activity of the human brain revealed by neuronal avalanches
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.126
– volume: 51
  start-page: 24
  issue: 1
  year: 2021
  ident: 10.1016/j.neucom.2025.130353_b11
  article-title: Human EEG and the mechanisms of memory: investigating long-term potentiation (LTP) in sensory-evoked potentials
  publication-title: J. R. Soc. N. Z.
  doi: 10.1080/03036758.2020.1780274
– volume: 35
  start-page: 921
  issue: 1
  year: 2023
  ident: 10.1016/j.neucom.2025.130353_b18
  article-title: Early automated prediction model for the diagnosis and detection of children with autism spectrum disorders based on effective sociodemographic and family characteristic features
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07822-0
– volume: 544
  year: 2023
  ident: 10.1016/j.neucom.2025.130353_b2
  article-title: Progressive graph convolution network for EEG emotion recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.126262
– volume: 6
  issue: 1
  year: 2024
  ident: 10.1016/j.neucom.2025.130353_b38
  article-title: Video anomaly detection utilizing efficient spatiotemporal feature fusion with 3D convolutions and long short-term memory modules
  publication-title: Adv. Intell. Syst.
– volume: 35
  start-page: 504
  issue: 6
  year: 2018
  ident: 10.1016/j.neucom.2025.130353_b7
  article-title: Relationship between EEG electrode and functional cortex in the international 10 to 20 system
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/WNP.0000000000000510
– year: 2024
  ident: 10.1016/j.neucom.2025.130353_b39
– volume: 88
  start-page: 9
  issue: 1
  year: 2020
  ident: 10.1016/j.neucom.2025.130353_b32
  article-title: Methods and challenges for assessing heterogeneity
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2020.02.015
– volume: 449
  start-page: 136
  year: 2021
  ident: 10.1016/j.neucom.2025.130353_b30
  article-title: Subject sensitive EEG discrimination with fast reconstructable CNN driven by reinforcement learning: A case study of ASD evaluation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.009
– volume: 15
  issue: 3
  year: 2018
  ident: 10.1016/j.neucom.2025.130353_b23
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aab2f2
– start-page: 218
  year: 2018
  ident: 10.1016/j.neucom.2025.130353_b29
  article-title: EEG based directional signal classification using RNN variants
– volume: 260
  year: 2025
  ident: 10.1016/j.neucom.2025.130353_b15
  article-title: Multimodal autism detection: Deep hybrid model with improved feature level fusion
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2024.108492
– volume: 7
  start-page: 1239
  issue: 12
  year: 2017
  ident: 10.1016/j.neucom.2025.130353_b25
  article-title: Review and classification of emotion recognition based on EEG brain-computer interface system research: a systematic review
  publication-title: Appl. Sci.
  doi: 10.3390/app7121239
– volume: 269
  year: 2023
  ident: 10.1016/j.neucom.2025.130353_b8
  article-title: Wireless EEG: A survey of systems and studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119774
– volume: 620
  year: 2025
  ident: 10.1016/j.neucom.2025.130353_b20
  article-title: ARNN: Attentive recurrent neural network for multi-channel EEG signals to identify epileptic seizures
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.129203
– volume: 185
  year: 2025
  ident: 10.1016/j.neucom.2025.130353_b3
  article-title: DCSENets: Interpretable deep learning for patient-independent seizure classification using enhanced EEG-based spectrogram visualization
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.109558
– volume: 250
  year: 2024
  ident: 10.1016/j.neucom.2025.130353_b28
  article-title: Autism spectrum disorder diagnosis with EEG signals using time series maps of brain functional connectivity and a combined CNN–LSTM model
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2024.108196
– volume: 228
  year: 2023
  ident: 10.1016/j.neucom.2025.130353_b41
  article-title: Deep learning based active learning technique for data annotation and improve the overall performance of classification models
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120391
– start-page: 401
  year: 2019
  ident: 10.1016/j.neucom.2025.130353_b27
  article-title: A hybrid model based on fuzzy rules to act on the diagnosed of autism in adults
– volume: 13
  start-page: 32
  year: 2019
  ident: 10.1016/j.neucom.2025.130353_b1
  article-title: A brief history of simulation neuroscience
  publication-title: Front. Neuroinformatics
  doi: 10.3389/fninf.2019.00032
– volume: 134
  year: 2021
  ident: 10.1016/j.neucom.2025.130353_b37
  article-title: Automated ASD detection using hybrid deep lightweight features extracted from EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104548
– volume: 1
  start-page: 29
  year: 2021
  ident: 10.1016/j.neucom.2025.130353_b19
  article-title: Review of the emotional feature extraction and classification using EEG signals
  publication-title: Cogn. Robot.
  doi: 10.1016/j.cogr.2021.04.001
– volume: 21
  issue: 6
  year: 2024
  ident: 10.1016/j.neucom.2025.130353_b5
  article-title: Temporal attention fusion network with custom loss function for EEG–fNIRS classification
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ad8e86
– volume: 10
  start-page: 7453
  issue: 21
  year: 2020
  ident: 10.1016/j.neucom.2025.130353_b4
  article-title: Electroencephalography (EEG) technology applications and available devices
  publication-title: Appl. Sci.
  doi: 10.3390/app10217453
SSID ssj0017129
Score 2.471196
Snippet Autism spectrum disorder (ASD) presents significant challenges in early detection due to its heterogeneous nature and the subtlety of neurophysiological...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 130353
SubjectTerms Autism spectrum disorder
Deep learning
EEG analysis
Fusion model
Neurocomputational diagnostics
Title Deep neurocomputational fusion for ASD diagnosis using multi-domain EEG analysis
URI https://dx.doi.org/10.1016/j.neucom.2025.130353
Volume 641
WOSCitedRecordID wos001502116400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017129
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBYh20MvfZduuy069BZcLCuW5KPZTV-HsDRbSE_GkqWSsOuETbzsz-_o5aRN6Qt6McFIspn5Io0-j75B6LUUuTQNbFOt-FgyzguTSCNoYoN1neUa_lFjV2yCT6diPi_OB4NZPAtzc8nbVtzeFuv_6mq4B862R2f_wt39oHADfoPT4Qpuh-sfOf5M6_XIyVQqV7Ehsn2m28S0wnJ2ZklXm2O32Iw6Rxe4zMKkWV3Vi3Y0mbwb1UGuZD98ne6GDRRDeWWVFhoLq55S-FRvQuGuUjZdn_1bRvTNatkvBvPOLQKr9utysftMFEjsL7Y0dLtPTGS5S4vjO7bs4MSMpx2hIcSU383AzGtfHczmnlhYvgGb2dQe-xBbvZp6eeEfdLJndmg7MgR1EDXlsC4fZTwvxBAdlR8m84_9xyVOMi_BGF4lnqh0aX-Hz_p5xLIXhVw8QPfC9gGX3u0P0UC3j9D9WJoDh5n6MTq3KMCHKMAeBRhQgAEFuEcBdijA-yjAgAIcUfAEfX47uTh9n4TiGYmiqdgmLG2YVtwoxomqYVerqTG5HqdKqFQL2PVyRWpGCVUEWhVGUSNZ3mSGpYbDOvAUDdtVq58hzCglUhgtuVMHVIUyDcslMWZMhCTkGNFooEoFZXlb4OSyiimEy8qbtbJmrbxZj1HS91p7ZZXftOfR9lWIDn3UVwFcftnz-T_3fIHu7pB9gobb606_RHfUzXaxuX4VcPUNlAWMMA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+neurocomputational+fusion+for+ASD+diagnosis+using+multi-domain+EEG+analysis&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Rasool%2C+Abdur&rft.au=Aslam%2C+Saba&rft.au=Xu%2C+Yongjie&rft.au=Wang%2C+Yishan&rft.date=2025-08-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.volume=641&rft_id=info:doi/10.1016%2Fj.neucom.2025.130353&rft.externalDocID=S0925231225010252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon