A modular, composite framework for the utilization of reduced-scaling Coulomb and exchange construction algorithms: Design and implementation

Multiple algorithms exist for calculating Coulomb (J) or exchange (K) contributions to Fock-like matrices, and it is beneficial to develop a framework that allows the seamless integration and combination of different J and K construction algorithms. In Psi4, we have implemented the "CompositeJK...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of chemical physics Ročník 161; číslo 5
Hlavní autoři: Poole, David, Williams-Young, David B, Jiang, Andy, Glick, Zachary L, Sherrill, C David
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 07.08.2024
ISSN:1089-7690, 1089-7690
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Multiple algorithms exist for calculating Coulomb (J) or exchange (K) contributions to Fock-like matrices, and it is beneficial to develop a framework that allows the seamless integration and combination of different J and K construction algorithms. In Psi4, we have implemented the "CompositeJK" formalism for this purpose. CompositeJK allows for the combination of any J and K construction algorithms for any quantum chemistry method formulated in terms of J-like or K-like matrices (including, but not limited to, Hartree-Fock and density functional theory) in a highly modular and intuitive fashion, which is simple to utilize for both developers and users. Using the CompositeJK framework, Psi4 was interfaced to the sn-LinK implementation in the GauXC library, adding the first instance of noncommercial graphics processing unit (GPU) support for the construction of Fock matrix elements to Psi4. On systems with hundreds of atoms, the interface to the CPU sn-LinK implementation displays a higher performance than all the alternative JK construction methods available in Psi4, with up to x2.8 speedups compared to existing Psi4JK implementations. The GPU sn-LinK implementation, harnessing the power of GPUs, improves the observed performance gains to up to x7.0.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1089-7690
1089-7690
DOI:10.1063/5.0216760