Solving second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative method

Purpose The purpose of this paper is to solve the second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative numerical method. Design/methodology/approach The authors introduce eigenfunctions as test functions, such that a weak-form integral equation is derived....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering computations Jg. 38; H. 1; S. 107 - 130
Hauptverfasser: Liu, Chein-Shan, Chang, Jiang-Ren
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bradford Emerald Publishing Limited 27.01.2021
Emerald Group Publishing Limited
Schlagworte:
ISSN:0264-4401, 1758-7077
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose The purpose of this paper is to solve the second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative numerical method. Design/methodology/approach The authors introduce eigenfunctions as test functions, such that a weak-form integral equation is derived. By expanding the numerical solution in terms of the weighted eigenfunctions and using the orthogonality of eigenfunctions with respect to a weight function, and together with the non-separated/mixed boundary conditions, one can obtain the closed-form expansion coefficients with the aid of Drazin inversion formula. Findings When the authors develop the iterative algorithm, removing the time-varying terms as well as the nonlinear terms to the right-hand sides, to solve the nonlinear boundary value problem, it is convergent very fast and also provides very accurate numerical solutions. Research limitations/implications Basically, the authors’ strategy for the iterative numerical algorithm is putting the time-varying terms as well as the nonlinear terms on the right-hand sides. Practical implications Starting from an initial guess with zero value, the authors used the closed-form formula to quickly generate the new solution, until the convergence is satisfied. Originality/value Through the tests by six numerical experiments, the authors have demonstrated that the proposed iterative algorithm is applicable to the highly complex nonlinear boundary value problems with nonlinear boundary conditions. Because the coefficient matrix is set up outside the iterative loop, and due to the property of closed-form expansion coefficients, the presented iterative algorithm is very time saving and converges very fast.
AbstractList PurposeThe purpose of this paper is to solve the second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative numerical method.Design/methodology/approachThe authors introduce eigenfunctions as test functions, such that a weak-form integral equation is derived. By expanding the numerical solution in terms of the weighted eigenfunctions and using the orthogonality of eigenfunctions with respect to a weight function, and together with the non-separated/mixed boundary conditions, one can obtain the closed-form expansion coefficients with the aid of Drazin inversion formula.FindingsWhen the authors develop the iterative algorithm, removing the time-varying terms as well as the nonlinear terms to the right-hand sides, to solve the nonlinear boundary value problem, it is convergent very fast and also provides very accurate numerical solutions.Research limitations/implicationsBasically, the authors’ strategy for the iterative numerical algorithm is putting the time-varying terms as well as the nonlinear terms on the right-hand sides.Practical implicationsStarting from an initial guess with zero value, the authors used the closed-form formula to quickly generate the new solution, until the convergence is satisfied.Originality/valueThrough the tests by six numerical experiments, the authors have demonstrated that the proposed iterative algorithm is applicable to the highly complex nonlinear boundary value problems with nonlinear boundary conditions. Because the coefficient matrix is set up outside the iterative loop, and due to the property of closed-form expansion coefficients, the presented iterative algorithm is very time saving and converges very fast.
Purpose The purpose of this paper is to solve the second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative numerical method. Design/methodology/approach The authors introduce eigenfunctions as test functions, such that a weak-form integral equation is derived. By expanding the numerical solution in terms of the weighted eigenfunctions and using the orthogonality of eigenfunctions with respect to a weight function, and together with the non-separated/mixed boundary conditions, one can obtain the closed-form expansion coefficients with the aid of Drazin inversion formula. Findings When the authors develop the iterative algorithm, removing the time-varying terms as well as the nonlinear terms to the right-hand sides, to solve the nonlinear boundary value problem, it is convergent very fast and also provides very accurate numerical solutions. Research limitations/implications Basically, the authors’ strategy for the iterative numerical algorithm is putting the time-varying terms as well as the nonlinear terms on the right-hand sides. Practical implications Starting from an initial guess with zero value, the authors used the closed-form formula to quickly generate the new solution, until the convergence is satisfied. Originality/value Through the tests by six numerical experiments, the authors have demonstrated that the proposed iterative algorithm is applicable to the highly complex nonlinear boundary value problems with nonlinear boundary conditions. Because the coefficient matrix is set up outside the iterative loop, and due to the property of closed-form expansion coefficients, the presented iterative algorithm is very time saving and converges very fast.
Author Chang, Jiang-Ren
Liu, Chein-Shan
Author_xml – sequence: 1
  givenname: Chein-Shan
  surname: Liu
  fullname: Liu, Chein-Shan
  email: csliu58@163.com
– sequence: 2
  givenname: Jiang-Ren
  surname: Chang
  fullname: Chang, Jiang-Ren
  email: cjr@mail.ntou.edu.tw
BookMark eNp9kT1PBCEURYnRxHW1tiWxRh8DyFCazfqRmFioNQHmqZhZUIZd4793JmujMVY091xuzjsguyknJOSYwynn0J4tFwwEa6ABBrwxO2TGtWqZBq13yQyac8mkBL5PDobhFQC0EDAj-T73m5ie6YAhp47l0mGhY3UfE7pCfV6nzpVPunH9Gulbyb7HFf2I9eWv1NQRa8xpoP6TukRjxeJq3CBdYX3J3SHZe3L9gEff75w8Xi4fFtfs9u7qZnFxy4KAtjLphQlKOy_NuB98o6FT59gE6RtjgkMDTokQtA5eSu5aMEoilx5AoVFOzMnJtndc_L7GodrXvC5p_NI2SkjZgjLtmFLbVCh5GAo-2RCrm_bX4mJvOdjJrV0uLAg7ubWT25E7-8W9lbgaBfxDnG4JXI1C-u4P4Mf5xBdNjow5
CitedBy_id crossref_primary_10_3390_math12233769
crossref_primary_10_1016_j_matcom_2021_12_013
crossref_primary_10_1016_j_seps_2024_101947
crossref_primary_10_1016_j_matcom_2023_03_015
Cites_doi 10.1016/j.cnsns.2007.09.012
10.1080/10236190108808274
10.1016/j.aml.2007.07.019
10.1016/S0898-1221(02)00282-1
10.1016/j.cam.2017.05.027
10.1155/2010/287473
10.1016/S0252-9602(17)30397-1
10.1016/j.camwa.2007.10.002
10.1016/j.nonrwa.2005.06.008
10.1016/j.cam.2005.05.006
10.1002/mma.5226
10.1016/j.aml.2017.02.018
10.1016/j.amc.2019.04.028
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited 2020
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited 2020
DBID AAYXX
CITATION
7SC
7TB
7WY
7WZ
7XB
8AO
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
F~G
GNUQQ
HCIFZ
JQ2
K6~
K7-
KR7
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1108/EC-03-2020-0129
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection (ProQuest)
Computing Database
Science Database (ProQuest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
Civil Engineering Abstracts
ABI/INFORM Global
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1758-7077
EndPage 130
ExternalDocumentID 10_1108_EC_03_2020_0129
10.1108/EC-03-2020-0129
GroupedDBID 02
0R
29G
4.4
5GY
5VS
70U
7WY
8AO
8FE
8FG
8FW
8R4
8R5
9E0
AADTA
AADXL
AAGBP
AAMCF
AATHL
AAUDR
ABFLS
ABIJV
ABJCF
ABKQV
ABPTK
ABSDC
ACGFS
ACGOD
ACIWK
ADOMW
AEBVX
AEBZA
AENEX
AEUCW
AFKRA
AFYHH
AFZLO
AJEBP
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASMFL
AUCOK
AZQEC
BENPR
BEZIV
BGLVJ
BPHCQ
BPQFQ
CS3
DU5
DWQXO
EBS
ECCUG
FNNZZ
GEI
GEL
GNUQQ
GQ.
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
HZ
IPNFZ
J1Y
JI-
JL0
K6
K6V
K7-
KBGRL
L6V
M0C
M2P
M7S
O9-
P2P
P62
PQBIZ
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
Q2X
RIG
RWL
TAE
TN5
U5U
UNMZH
V1G
0R~
AAYXX
ABJNI
ABYQI
ACBEA
ACZLT
ADFRT
AFFHD
AHMHQ
AODMV
CCPQU
CITATION
H13
HZ~
IJT
K6~
M42
PHGZM
PHGZT
PQGLB
SBBZN
~02
7SC
7TB
7XB
8FD
AFNTC
FR3
JQ2
KR7
L.-
L.0
L7M
L~C
L~D
M0N
PKEHL
Q9U
ID FETCH-LOGICAL-c308t-4b39c57ab490770b270d56e2c4b299cae90a53cc77cb441a80954e14b005e95a3
IEDL.DBID M2P
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541872000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0264-4401
IngestDate Fri Jul 25 19:50:51 EDT 2025
Tue Nov 18 21:09:06 EST 2025
Sat Nov 29 07:37:11 EST 2025
Tue Feb 15 19:18:54 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nonlinear boundary value problem
Iterative algorithm
Nonlinear boundary conditions
Eigenfunctions as test functions
Closed-form expansion coefficients
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-4b39c57ab490770b270d56e2c4b299cae90a53cc77cb441a80954e14b005e95a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2534480598
PQPubID 26043
PageCount 24
ParticipantIDs proquest_journals_2534480598
emerald_primary_10_1108_EC-03-2020-0129
crossref_citationtrail_10_1108_EC_03_2020_0129
crossref_primary_10_1108_EC_03_2020_0129
PublicationCentury 2000
PublicationDate 2021-01-27
PublicationDateYYYYMMDD 2021-01-27
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-27
  day: 27
PublicationDecade 2020
PublicationPlace Bradford
PublicationPlace_xml – name: Bradford
PublicationTitle Engineering computations
PublicationYear 2021
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2021043009424099000_ref007) 2002; 44
(key2021043009424099000_ref006) 2007; 8
(key2021043009424099000_ref009) 2004; 47
(key2021043009424099000_ref013) 2017; 41
(key2021043009424099000_ref019) 2010; 2010
(key2021043009424099000_ref001) 2009; 14
(key2021043009424099000_ref010) 1998
(key2021043009424099000_ref014) 2017; 73
(key2021043009424099000_ref004) 2008; 55
(key2021043009424099000_ref003) 2011; 2011
(key2021043009424099000_ref005) 2006; 192
(key2021043009424099000_ref012) 2019; 359
(key2021043009424099000_ref017) 2001; 21
(key2021043009424099000_ref008) 2001; 7
(key2021043009424099000_ref011) 2006; 13
(key2021043009424099000_ref016) 2017; 326
(key2021043009424099000_ref002) 1965
(key2021043009424099000_ref018) 2008; 21
(key2021043009424099000_ref015) 2018; 41
References_xml – volume: 14
  start-page: 430
  issue: 2
  year: 2009
  ident: key2021043009424099000_ref001
  article-title: Modified homotopy analysis method for solving systems of second-order BVPs
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2007.09.012
– volume: 7
  start-page: 297
  issue: 2
  year: 2001
  ident: key2021043009424099000_ref008
  article-title: Difference equations associated with fully nonlinear boundary value problems for second order ordinary differential equations
  publication-title: Journal of Difference Equations and Applications
  doi: 10.1080/10236190108808274
– volume: 21
  start-page: 656
  issue: 7
  year: 2008
  ident: key2021043009424099000_ref018
  article-title: Existence and monotone iteration of positive solutions for a three-point boundary value problem
  publication-title: Applied Mathematics Letters
  doi: 10.1016/j.aml.2007.07.019
– volume: 44
  start-page: 1599
  issue: 12
  year: 2002
  ident: key2021043009424099000_ref007
  article-title: Numerical study for two-point boundary value problems using green’s functions
  publication-title: Computers and Mathematics with Applications
  doi: 10.1016/S0898-1221(02)00282-1
– volume-title: Vol. 440 of Mathematics and Its Applications
  year: 1998
  ident: key2021043009424099000_ref010
  article-title: Generalized quasilinearization for nonlinear problems
– volume: 326
  start-page: 87
  year: 2017
  ident: key2021043009424099000_ref016
  article-title: An iterative method based on coupled closed-form coefficients expansions for recovering the pollutant source and initial pollution profile
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2017.05.027
– volume: 2010
  start-page: 287473
  year: 2010
  ident: key2021043009424099000_ref019
  article-title: A second-order boundary value problem with nonlinear and mixed boundary conditions: Existence, uniqueness, and approximation
  publication-title: Abstr Appl Anal
  doi: 10.1155/2010/287473
– volume-title: Quasilinearization and Nonlinear Boundary Value Problems
  year: 1965
  ident: key2021043009424099000_ref002
– volume: 21
  start-page: 189
  issue: 2
  year: 2001
  ident: key2021043009424099000_ref017
  article-title: Existence results for semipositone boundary value problems
  publication-title: Acta Mathematica Scientia
  doi: 10.1016/S0252-9602(17)30397-1
– volume: 2011
  start-page: 893753
  year: 2011
  ident: key2021043009424099000_ref003
  article-title: An overview of the lower and upper solutions method with nonlinear boundary value conditions
  publication-title: Boundary Value Problems
– volume: 55
  start-page: 2476
  issue: 11
  year: 2008
  ident: key2021043009424099000_ref004
  article-title: A numerical approach to nonlinear two-point boundary value problems for ODEs
  publication-title: Computers and Mathematics with Applications
  doi: 10.1016/j.camwa.2007.10.002
– volume: 8
  start-page: 174
  issue: 1
  year: 2007
  ident: key2021043009424099000_ref006
  article-title: A quasilinearization method for a class of second order singular nonlinear differential equations with nonlinear boundary conditions
  publication-title: Nonlinear Analysis: Real World Applications
  doi: 10.1016/j.nonrwa.2005.06.008
– volume: 192
  start-page: 270
  issue: 2
  year: 2006
  ident: key2021043009424099000_ref005
  article-title: A generalized quasilinearization method for second-order nonlinear differential equations with nonlinear boundary conditions
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2005.05.006
– volume: 13
  start-page: 149
  year: 2006
  ident: key2021043009424099000_ref011
  article-title: The lie-group shooting method for nonlinear two-point boundary value problems exhibiting multiple solutions
  publication-title: Comput Model Eng Sci
– volume: 41
  start-page: 7641
  issue: 17
  year: 2018
  ident: key2021043009424099000_ref015
  article-title: A simple non-iterative method for recovering a space-dependent load on the Euler-Bernoulli beam equation
  publication-title: Mathematical Methods in the Applied Sciences
  doi: 10.1002/mma.5226
– volume: 73
  start-page: 150
  year: 2017
  ident: key2021043009424099000_ref014
  article-title: Exactly determining the expansion coefficients in the recovery of space-dependent pollutant source
  publication-title: Applied Mathematics Letters
  doi: 10.1016/j.aml.2017.02.018
– volume: 41
  start-page: 1855
  issue: 5
  year: 2017
  ident: key2021043009424099000_ref013
  article-title: Highly accurate algorithms endowing with boundary functions for solving a nonlinear beam equation involving an integral term
  publication-title: Mathematical Methods in the Applied Sciences
– volume: 47
  start-page: 1619
  issue: 10/11
  year: 2004
  ident: key2021043009424099000_ref009
  article-title: Quadratic approximation of solutions for differential equations with nonlinear boundary conditions
  publication-title: Computers and Mathematics with Applications
– volume: 359
  start-page: 386
  year: 2019
  ident: key2021043009424099000_ref012
  article-title: Closed-form higher-order numerical differentiators for differentiating noisy signals
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2019.04.028
SSID ssj0007330
Score 2.2686281
Snippet Purpose The purpose of this paper is to solve the second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative numerical...
PurposeThe purpose of this paper is to solve the second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative numerical...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107
SubjectTerms Algorithms
Approximation
Boundary conditions
Boundary value problems
Closed form solutions
Convergence
Eigenvalues
Eigenvectors
Exact solutions
Integral equations
Iterative algorithms
Iterative methods
Numerical analysis
Numerical methods
Ordinary differential equations
Orthogonality
Thermal expansion
Weighting functions
Title Solving second-order nonlinear boundary value problem with nonlinear boundary conditions by an iterative method
URI https://www.emerald.com/insight/content/doi/10.1108/EC-03-2020-0129/full/html
https://www.proquest.com/docview/2534480598
Volume 38
WOSCitedRecordID wos000541872000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: 7WY
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: M0C
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: P5Z
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: K7-
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: M7S
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: BENPR
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: M2P
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6ax6E9NM22Idskiw6B9qJGluWVfSrJsqHQZlm6DXlcjCRLEAi76XpbyL_vjK3Ni7SXXgS2ZSMYaTTfaPx9APu6CCEPueXSeQQofSV4UXnLMRa3Mii8WzWqJd_0aJSfnxfjmHCrY1nl0ic2jrqaOcqRH8gsRSSBwUD--eYnJ9UoOl2NEhorsIaRTUIlXSdyfOeJdZrGHIviCoFEpPYh5ZvhgAqJJIEnSsU82pWe_Jp7756bPed4439H-wZex2iTHbbTYxNe-GkHNmLkyeK6rjvw6gEt4VuYTWbXlGdgNaHlijf0nGzakmqYObONFNP8lhFTuGdRk4ZRSve5XvSNtjCM2VtmpqxlckY3y1r96ndwejz8MfjCozADd6nIF1zZtHCZNlYhtNbCSi2qrO-lUxZ3N2d8IUyWOqe1sxhumRzjOOUTRUveF5lJt2AVh-O3gfXRBEGIYLQICGUTWxhZBZOIEExlrOjCp6VhShdZy0k847ps0IvIy-GgFGlJlizJkl34ePfCTUvY8feuH6Kln-n5aHp0YXdp5jKu8bq8t_H7fz_egZeSKmFEwqXehdXF_Jffg3X3e3FVz3uwos8uerB2NByNv-PVV82xPRGDXjOZqdUTbMfZ5R-spPil
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQcKBRQFwr4AIKLwXGcdXJACC1bteqyqkSRejO2Y0tI1W67WUD7p_iNzCROS1Hh1gPX2LGi-GW-Mn4P4LmuYixj6bj0AROUoRK8qoPjGIs7GRVerVvVkomeTsujo-pgDX72Z2GorbK3ia2hrueeauRvZJFjJoHBQPnu5JSTahT9Xe0lNDpY7IfVD0zZmrd7H3B_X0i5Mz4c7fKkKsB9LsolVy6vfKGtU5gXauGkFnUxDNIrh6bZ21AJW-Tea-0dxgq2xCBEhUwRXkNV2BzXvQbXFTGLUaugPDiz_DrPU01HcRzPEpUQKe2MR9S4JClZo9LPBS_4x1Hgc3fQ-ridjf_t7dyFOymaZu87-N-DtTDbhI0UWbNkt5pNuP0b7eJ9mH-aH1MdhTVUDah5Sz_KZh1piF0w10pNLVaMmNADS5o7jErWl82iNbrGN-ZWzM5Yx1SNboR1-twP4POVvISHsI6PE7aADXHLoxDRahExVc9cZWUdbSZitLV1YgCveyAYn1jZSRzk2LTZmSjNeGREbgg5hpAzgFdnN5x0hCR_n_oyIeuSmRfgOIDtHlYm2bDGnGPq0b-Hn8HN3cOPEzPZm-4_hluSun5ExqXehvXl4lt4Ajf89-XXZvG0_VwYfLlqBP4CVjxNvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+second-order+nonlinear+boundary+value+problem+with+nonlinear+boundary+conditions+by+an+iterative+method&rft.jtitle=Engineering+computations&rft.au=Liu%2C+Chein-Shan&rft.au=Jiang-Ren%2C+Chang&rft.date=2021-01-27&rft.pub=Emerald+Group+Publishing+Limited&rft.issn=0264-4401&rft.eissn=1758-7077&rft.volume=38&rft.issue=1&rft.spage=107&rft.epage=130&rft_id=info:doi/10.1108%2FEC-03-2020-0129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-4401&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-4401&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-4401&client=summon