Spectral characterizations and integer powers of tridiagonal 2-Toeplitz matrices

In this note, we consider real nonsymmetric tridiagonal 2-Toeplitz matrices B n . First we give the asymptotic spectral and singular value distribution of the whole matrix-sequence { B n } n , which is described via two eigenvalue functions of a 2 × 2 matrix-valued symbol. In connection with the abo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 100; číslo 2; s. 707 - 727
Hlavní autoři: Shams Solary, Maryam, Serra-Capizzano, Stefano
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2025
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this note, we consider real nonsymmetric tridiagonal 2-Toeplitz matrices B n . First we give the asymptotic spectral and singular value distribution of the whole matrix-sequence { B n } n , which is described via two eigenvalue functions of a 2 × 2 matrix-valued symbol. In connection with the above findings, we provide a characterization of the eigenvalues and eigenvectors of real tridiagonal 2-Toeplitz matrices B n of even order, that can be turned into a numerical effective scheme for the computation of all the entries of B n l , n even and l positive and small compared to n . We recall that a corresponding eigenvalue decomposition for odd order tridiagonal 2-Toeplitz matrices was found previously, while, for even orders, an implicit formula for all the eigenvalues is obtained.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
1572-9265
DOI:10.1007/s11075-024-01863-3