Learning minimal representations of stochastic processes with variational autoencoders

Stochastic processes have found numerous applications in science, as they are broadly used to model a variety of natural phenomena. Due to their intrinsic randomness and uncertainty, they are, however, difficult to characterize. Here, we introduce an unsupervised machine learning approach to determi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review. E Ročník 110; číslo 1; s. L012102
Hlavní autoři: Fernández-Fernández, Gabriel, Manzo, Carlo, Lewenstein, Maciej, Dauphin, Alexandre, Muñoz-Gil, Gorka
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.07.2024
ISSN:2470-0053, 2470-0053
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Stochastic processes have found numerous applications in science, as they are broadly used to model a variety of natural phenomena. Due to their intrinsic randomness and uncertainty, they are, however, difficult to characterize. Here, we introduce an unsupervised machine learning approach to determine the minimal set of parameters required to effectively describe the dynamics of a stochastic process. Our method builds upon an extended β-variational autoencoder architecture. By means of simulated data sets corresponding to paradigmatic diffusion models, we showcase its effectiveness in extracting the minimal relevant parameters that accurately describe these dynamics. Furthermore, the method enables the generation of new trajectories that faithfully replicate the expected stochastic behavior. Overall, our approach enables the autonomous discovery of unknown parameters describing stochastic processes, hence enhancing our comprehension of complex phenomena across various fields.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2470-0053
2470-0053
DOI:10.1103/PhysRevE.110.L012102