Task scheduling using a block dependency DAG for block-oriented sparse Cholesky factorization
Block-oriented sparse Cholesky factorization decomposes a sparse matrix into rectangular subblocks; each block can then be handled as a computational unit in order to increase data reuse in a hierarchical memory system. Also, the factorization method increases the degree of concurrency and reduces t...
Gespeichert in:
| Veröffentlicht in: | Parallel computing Jg. 29; H. 1; S. 135 - 159 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
2003
|
| Schlagworte: | |
| ISSN: | 0167-8191, 1872-7336 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Block-oriented sparse Cholesky factorization decomposes a sparse matrix into rectangular subblocks; each block can then be handled as a computational unit in order to increase data reuse in a hierarchical memory system. Also, the factorization method increases the degree of concurrency and reduces the overall communication volume so that it performs more efficiently on a distributed-memory multiprocessor system than the customary column-oriented factorization method. But until now, mapping of blocks to processors has been designed for load balance with restricted communication patterns. In this paper, we represent tasks using a block dependency DAG that represents the execution behavior of block sparse Cholesky factorization in a distributed-memory system. Since the characteristics of tasks for block Cholesky factorization are different from those of the conventional parallel task model, we propose a new task scheduling algorithm using a block dependency DAG. The proposed algorithm consists of two stages:
early-start clustering, and affined cluster mapping (ACM). The early-start clustering stage is used to cluster tasks while preserving the earliest start time of a task without limiting parallelism. After task clustering, the ACM stage allocates clusters to processors considering both communication cost and load balance. Experimental results on a Myrinet cluster system show that the proposed task scheduling approach outperforms other processor mapping methods. |
|---|---|
| ISSN: | 0167-8191 1872-7336 |
| DOI: | 10.1016/S0167-8191(02)00220-X |