Trefftz boundary element method applied to fracture mechanics

The linear elastic problem is solved by means of Trefftz functions which automatically satisfy the elasticity equations in a 2D domain. Using Kolosov–Muskhelishvili’s complex variable representation, complex potentials are expanded in power series. Trial elementary elastic fields are derived from ea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering fracture mechanics Ročník 64; číslo 1; s. 67 - 86
Hlavní autoři: Sabino Domingues, J., Portela, A., de Castro, P.M.S.T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.1999
Témata:
ISSN:0013-7944, 1873-7315
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The linear elastic problem is solved by means of Trefftz functions which automatically satisfy the elasticity equations in a 2D domain. Using Kolosov–Muskhelishvili’s complex variable representation, complex potentials are expanded in power series. Trial elementary elastic fields are derived from each expansion term. The Galerkin weighted residuals formulation is used to derive the system of equations in which the unknowns are the retained expansion coefficients. For crack problems, special expansions that satisfy the zero traction condition along crack edges are used to obtain the approximating elastic field, which allow the direct determination of the stress intensity factors. Several numerical results, obtained for typical crack problems using Trefftz Boundary Element Method, are presented and compared with those published by other authors. A simple example of multiple site damage with two offset parallel cracks is also analyzed.
ISSN:0013-7944
1873-7315
DOI:10.1016/S0013-7944(99)00062-4