Explicit boundary element method for nonlinear solid mechanics using domain integral reduction
Applied to solid mechanics problems with geometric nonlinearity, current finite element and boundary element methods face difficulties if the domain is highly distorted. Furthermore, current boundary element method (BEM) methods for geometrically nonlinear problems are implicit: the source term depe...
Uložené v:
| Vydané v: | Engineering analysis with boundary elements Ročník 24; číslo 10; s. 707 - 713 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.12.2000
|
| Predmet: | |
| ISSN: | 0955-7997, 1873-197X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Applied to solid mechanics problems with geometric nonlinearity, current finite element and boundary element methods face difficulties if the domain is highly distorted. Furthermore, current boundary element method (BEM) methods for geometrically nonlinear problems are implicit: the source term depends on the unknowns within the arguments of domain integrals. In the current study, a new BEM method is formulated which is explicit and whose stiffness matrices require no domain function evaluations. It exploits a rigorous incremental equilibrium equation. The method is also based on a Domain Integral Reduction Algorithm (DIRA), exploiting the Helmholtz decomposition to obviate domain function evaluations. The current version of DIRA introduces a major improvement compared to the initial version. |
|---|---|
| ISSN: | 0955-7997 1873-197X |
| DOI: | 10.1016/S0955-7997(00)00053-9 |