Redundancy estimates for the Lempel–Ziv algorithm of data compression
The problem of non-distorting compression (or coding) of sequences of symbols is considered. For sequences of asymptotically zero empirical entropy, a modification of the Lempel–Ziv coding rule is offered whose coding cost is at most a finite number of times worse than the optimum. A combinatorial p...
Uložené v:
| Vydané v: | Discrete Applied Mathematics Ročník 135; číslo 1; s. 245 - 254 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
15.01.2004
|
| Predmet: | |
| ISSN: | 0166-218X, 1872-6771 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The problem of non-distorting compression (or coding) of sequences of symbols is considered. For sequences of asymptotically zero empirical entropy, a modification of the Lempel–Ziv coding rule is offered whose coding cost is at most a finite number of times worse than the optimum. A combinatorial proof is offered for the well-known redundancy estimate of the Lempel–Ziv coding algorithm for sequences having a positive entropy. |
|---|---|
| ISSN: | 0166-218X 1872-6771 |
| DOI: | 10.1016/S0166-218X(02)00308-6 |