A parallel multi-modular algorithm for computing Lagrange resolvents
The aim of this paper is to exploit the algorithms of paper Experimental Math. 8 (1999) in order to produce a new algebraic method for computing efficiently absolute Lagrange resolvent, a fundamental tool in constructive algebraic Galois theory. This article is composed of two parts. The main idea o...
Uloženo v:
| Vydáno v: | Journal of symbolic computation Ročník 37; číslo 5; s. 547 - 556 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.05.2004
|
| Témata: | |
| ISSN: | 0747-7171, 1095-855X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The aim of this paper is to exploit the algorithms of paper Experimental Math. 8 (1999) in order to produce a new algebraic method for computing efficiently absolute Lagrange resolvent, a fundamental tool in constructive algebraic Galois theory. This article is composed of two parts.
The main idea of the first part is to break up the calculation of absolute resolvent into smaller computations. Since a multi-resolvent is a factor of a resolvent, the whole resolvent may be computed by means of several multi-resolvents.
The idea of the second part is that an irreducible polynomial over
Z
might be reducible over
Z /p
Z
for certain integer
p. So the first part can be applied and then, the Chinese remainder theorem allows to lift up the resolvent over
Z
. |
|---|---|
| ISSN: | 0747-7171 1095-855X |
| DOI: | 10.1016/S0747-7171(02)00012-3 |