A parallel multi-modular algorithm for computing Lagrange resolvents

The aim of this paper is to exploit the algorithms of paper Experimental Math. 8 (1999) in order to produce a new algebraic method for computing efficiently absolute Lagrange resolvent, a fundamental tool in constructive algebraic Galois theory. This article is composed of two parts. The main idea o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of symbolic computation Ročník 37; číslo 5; s. 547 - 556
Hlavní autor: Rennert, Nicolas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.05.2004
Témata:
ISSN:0747-7171, 1095-855X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The aim of this paper is to exploit the algorithms of paper Experimental Math. 8 (1999) in order to produce a new algebraic method for computing efficiently absolute Lagrange resolvent, a fundamental tool in constructive algebraic Galois theory. This article is composed of two parts. The main idea of the first part is to break up the calculation of absolute resolvent into smaller computations. Since a multi-resolvent is a factor of a resolvent, the whole resolvent may be computed by means of several multi-resolvents. The idea of the second part is that an irreducible polynomial over Z might be reducible over Z /p Z for certain integer p. So the first part can be applied and then, the Chinese remainder theorem allows to lift up the resolvent over Z .
ISSN:0747-7171
1095-855X
DOI:10.1016/S0747-7171(02)00012-3