A parallel multi-modular algorithm for computing Lagrange resolvents

The aim of this paper is to exploit the algorithms of paper Experimental Math. 8 (1999) in order to produce a new algebraic method for computing efficiently absolute Lagrange resolvent, a fundamental tool in constructive algebraic Galois theory. This article is composed of two parts. The main idea o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of symbolic computation Jg. 37; H. 5; S. 547 - 556
1. Verfasser: Rennert, Nicolas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.05.2004
Schlagworte:
ISSN:0747-7171, 1095-855X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to exploit the algorithms of paper Experimental Math. 8 (1999) in order to produce a new algebraic method for computing efficiently absolute Lagrange resolvent, a fundamental tool in constructive algebraic Galois theory. This article is composed of two parts. The main idea of the first part is to break up the calculation of absolute resolvent into smaller computations. Since a multi-resolvent is a factor of a resolvent, the whole resolvent may be computed by means of several multi-resolvents. The idea of the second part is that an irreducible polynomial over Z might be reducible over Z /p Z for certain integer p. So the first part can be applied and then, the Chinese remainder theorem allows to lift up the resolvent over Z .
ISSN:0747-7171
1095-855X
DOI:10.1016/S0747-7171(02)00012-3