A multilevel matrix decomposition algorithm for analyzing scattering from large structures
A multilevel algorithm is presented for analyzing scattering from electrically large surfaces. The algorithm accelerates the iterative solution of integral equations that arise in computational electromagnetics. The algorithm permits a fast matrix-vector multiplication by decomposing the traditional...
Uloženo v:
| Vydáno v: | IEEE transactions on antennas and propagation Ročník 44; číslo 8; s. 1086 - 1093 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.08.1996
|
| Témata: | |
| ISSN: | 0018-926X, 1558-2221 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A multilevel algorithm is presented for analyzing scattering from electrically large surfaces. The algorithm accelerates the iterative solution of integral equations that arise in computational electromagnetics. The algorithm permits a fast matrix-vector multiplication by decomposing the traditional method of moment matrix into a large number of blocks, with each describing the interaction between distant scatterers. The multiplication of each block by a trial solution vector is executed using a multilevel scheme that resembles a fast Fourier transform (FFT) and that only relies on well-known algebraic techniques. The computational complexity and the memory requirements of the proposed algorithm are O(N log/sup 2/ N). |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0018-926X 1558-2221 |
| DOI: | 10.1109/8.511816 |