Heuristic computing with sequential quadratic programming for solving a nonlinear hepatitis B virus model

This current study presents a nonlinear system of the hepatitis B virus infection by using the strength of artificial neural network (ANN) together with the competences of global and local search efficiencies of genetic algorithm (GA) and sequential quadratic programming scheme (SQPS), i.e., ANN-GA-...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics and computers in simulation Ročník 212; s. 234 - 248
Hlavní autoři: Umar, Muhammad, Sabir, Zulqurnain, Raja, Muhammad Asif Zahoor, Baskonus, Haci Mehmet, Ali, Mohamed R., Shah, Nehad Ali
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2023
Témata:
ISSN:0378-4754, 1872-7166
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This current study presents a nonlinear system of the hepatitis B virus infection by using the strength of artificial neural network (ANN) together with the competences of global and local search efficiencies of genetic algorithm (GA) and sequential quadratic programming scheme (SQPS), i.e., ANN-GA-SQPS. An error function is designed to use the mathematical form of the hepatitis B virus differential model and its initial conditions. The optimization of the error function is performed by using the hybridization efficiency of the GA-SQPS for the hepatitis B virus infection disease model. For the competence of ANN-GA-SQPS, the matching of obtained and the Adams numerical solutions has been observed. The absolute error is found in good measures for solving a nonlinear hepatitis B virus infection disease model. Moreover, statistical measures using different indices for 50 independent executions and 30 variables have been performed to check constancy, reliability, and effectiveness of the ANN-GA-SQPS.
ISSN:0378-4754
1872-7166
DOI:10.1016/j.matcom.2023.04.034