Similarity-based Android malware detection using Hamming distance of static binary features
In this paper, we develop four malware detection methods using Hamming distance to find similarity between samples which are first nearest neighbors (FNN), all nearest neighbors (ANN), weighted all nearest neighbors (WANN), and k-medoid based nearest neighbors (KMNN). In our proposed methods, we can...
Uložené v:
| Vydané v: | Future generation computer systems Ročník 105; s. 230 - 247 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.04.2020
|
| Predmet: | |
| ISSN: | 0167-739X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we develop four malware detection methods using Hamming distance to find similarity between samples which are first nearest neighbors (FNN), all nearest neighbors (ANN), weighted all nearest neighbors (WANN), and k-medoid based nearest neighbors (KMNN). In our proposed methods, we can trigger the alarm if we detect an Android app is malicious. Hence, our solutions help us to avoid the spread of detected malware on a broader scale. We provide a detailed description of the proposed detection methods and related algorithms. We include an extensive analysis to assess the suitability of our proposed similarity-based detection methods. In this way, we perform our experiments on three datasets, including benign and malware Android apps like Drebin, Contagio, and Genome. Thus, to corroborate the actual effectiveness of our classifier, we carry out performance comparisons with some state-of-the-art classification and malware detection algorithms, namely Mixed and Separated solutions, the program dissimilarity measure based on entropy (PDME) and the FalDroid algorithms. We test our experiments in a different type of features: API, intent, and permission features on these three datasets. The results confirm that accuracy rates of proposed algorithms are more than 90% and in some cases (i.e., considering API features) are more than 99%, and are comparable with existing state-of-the-art solutions.
•We prove the similar results achievement of using Hamming distance with others.•We propose four scenarios for malware detection using Hamming distances.•We obtain the maximum achievable accuracy with the Hamming distance as a threshold.•We evaluate our methods using three standard datasets and various features.•We compare our malware detection methods against three cutting-edge solutions. |
|---|---|
| AbstractList | In this paper, we develop four malware detection methods using Hamming distance to find similarity between samples which are first nearest neighbors (FNN), all nearest neighbors (ANN), weighted all nearest neighbors (WANN), and k-medoid based nearest neighbors (KMNN). In our proposed methods, we can trigger the alarm if we detect an Android app is malicious. Hence, our solutions help us to avoid the spread of detected malware on a broader scale. We provide a detailed description of the proposed detection methods and related algorithms. We include an extensive analysis to assess the suitability of our proposed similarity-based detection methods. In this way, we perform our experiments on three datasets, including benign and malware Android apps like Drebin, Contagio, and Genome. Thus, to corroborate the actual effectiveness of our classifier, we carry out performance comparisons with some state-of-the-art classification and malware detection algorithms, namely Mixed and Separated solutions, the program dissimilarity measure based on entropy (PDME) and the FalDroid algorithms. We test our experiments in a different type of features: API, intent, and permission features on these three datasets. The results confirm that accuracy rates of proposed algorithms are more than 90% and in some cases (i.e., considering API features) are more than 99%, and are comparable with existing state-of-the-art solutions.
•We prove the similar results achievement of using Hamming distance with others.•We propose four scenarios for malware detection using Hamming distances.•We obtain the maximum achievable accuracy with the Hamming distance as a threshold.•We evaluate our methods using three standard datasets and various features.•We compare our malware detection methods against three cutting-edge solutions. |
| Author | Shojafar, Mohammad Taheri, Rahim Pooranian, Zahra Ghahramani, Meysam Javidan, Reza Conti, Mauro |
| Author_xml | – sequence: 1 givenname: Rahim surname: Taheri fullname: Taheri, Rahim email: r.taheri@sutech.ac.ir organization: Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran – sequence: 2 givenname: Meysam surname: Ghahramani fullname: Ghahramani, Meysam email: m.ghahramani@sutech.ac.ir organization: Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran – sequence: 3 givenname: Reza surname: Javidan fullname: Javidan, Reza email: javidan@sutech.ac.ir organization: Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran – sequence: 4 givenname: Mohammad surname: Shojafar fullname: Shojafar, Mohammad email: m.shojafar@surrey.ac.uk organization: ICS/5GIC, University of Surrey, Guildford GU27XH, UK – sequence: 5 givenname: Zahra surname: Pooranian fullname: Pooranian, Zahra email: zahra@math.unipd.it organization: Department of Mathematics, University of Padua, Via Trieste 63, Padua, 35131, Italy – sequence: 6 givenname: Mauro surname: Conti fullname: Conti, Mauro email: conti@math.unipd.it organization: Department of Mathematics, University of Padua, Via Trieste 63, Padua, 35131, Italy |
| BookMark | eNqFkM1KAzEUhbOoYKu-gYu8wIxJ5t-FUIpaoeDCLgQXIZPcyC2djCSp0rc3Q1250NW5cDmHc74FmbnRASHXnOWc8fpml9tDPHjIBeNdznnOinJG5unVZE3RvZ6TRQg7xhhvCj4nby844F55jMesVwEMXTrjRzR0UPsv5YEaiKAjjo4eArp3ulbDMKnBEJXTQEdL0xVR0x6d8kdqQU0NwiU5s2of4OpHL8j24X67Wmeb58en1XKT6YLVMQNhu743QoHQneoqaG1V8aYWBbSCa-hsejJVqtIKK5RQVneiND2r24rrtrggt6dY7ccQPFipceozuugV7iVnciIjd_JERk5kJOcykUnm8pf5w-OQVvxnuzvZIO36RPAyaIREw6BPtKQZ8e-Ab07ahy8 |
| CitedBy_id | crossref_primary_10_1016_j_jisa_2024_103880 crossref_primary_10_1016_j_tcs_2022_07_018 crossref_primary_10_1007_s11227_024_05916_1 crossref_primary_10_1007_s12530_022_09471_z crossref_primary_10_5194_ms_13_55_2022 crossref_primary_10_1080_23335777_2025_2510423 crossref_primary_10_1109_ACCESS_2021_3069210 crossref_primary_10_1155_2022_8621083 crossref_primary_10_1038_s41598_022_19443_7 crossref_primary_10_1109_TCSVT_2023_3275814 crossref_primary_10_7717_peerj_cs_907 crossref_primary_10_1109_ACCESS_2022_3189645 crossref_primary_10_3390_sym12050858 crossref_primary_10_1016_j_eswa_2020_114348 crossref_primary_10_1109_ACCESS_2021_3079370 crossref_primary_10_1109_TC_2023_3291998 crossref_primary_10_1007_s10489_023_04482_y crossref_primary_10_1016_j_eswa_2023_123109 crossref_primary_10_1186_s42400_022_00119_8 crossref_primary_10_1016_j_eswa_2024_124095 crossref_primary_10_1155_2023_8227751 crossref_primary_10_1016_j_eswa_2023_122255 crossref_primary_10_1007_s10586_023_04033_7 crossref_primary_10_1007_s11192_020_03834_6 crossref_primary_10_1007_s12652_023_04557_1 crossref_primary_10_3233_JIFS_222612 crossref_primary_10_1016_j_cose_2021_102514 crossref_primary_10_1155_2022_6425583 crossref_primary_10_1016_j_cose_2025_104379 crossref_primary_10_7717_peerj_cs_533 crossref_primary_10_1007_s00521_021_05816_y crossref_primary_10_1016_j_future_2025_108092 crossref_primary_10_1007_s10207_023_00712_z crossref_primary_10_1109_ACCESS_2025_3589656 crossref_primary_10_1016_j_cose_2024_103778 crossref_primary_10_1109_ACCESS_2021_3062735 crossref_primary_10_1016_j_neucom_2025_131486 crossref_primary_10_1007_s10462_022_10143_2 crossref_primary_10_1108_IJWIS_03_2024_0095 crossref_primary_10_1111_exsy_13684 crossref_primary_10_3390_fi12090145 crossref_primary_10_1371_journal_pone_0276332 crossref_primary_10_3390_info12050185 crossref_primary_10_1016_j_compeleceng_2021_107443 crossref_primary_10_1007_s10207_024_00822_2 crossref_primary_10_1371_journal_pone_0247119 crossref_primary_10_1109_ACCESS_2024_3485917 crossref_primary_10_3390_electronics13030482 crossref_primary_10_3390_jmse9121458 crossref_primary_10_1016_j_measen_2023_100955 crossref_primary_10_1016_j_rineng_2025_104450 crossref_primary_10_1080_19393555_2020_1767239 crossref_primary_10_1002_gdj3_234 crossref_primary_10_1016_j_iot_2024_101300 crossref_primary_10_1016_j_icte_2021_09_003 crossref_primary_10_1155_2020_2835023 crossref_primary_10_1007_s00500_025_10489_z crossref_primary_10_1002_spy2_70053 crossref_primary_10_3390_systems11110547 crossref_primary_10_1016_j_jnca_2024_104035 crossref_primary_10_1016_j_comnet_2021_107932 crossref_primary_10_1016_j_cose_2023_103654 crossref_primary_10_1080_01605682_2021_1992310 crossref_primary_10_1371_journal_pone_0270647 crossref_primary_10_3390_math12101437 crossref_primary_10_1016_j_jisa_2021_102929 crossref_primary_10_1049_ntw2_12022 crossref_primary_10_1080_1206212X_2021_1885150 crossref_primary_10_1007_s42454_024_00055_7 crossref_primary_10_1016_j_engappai_2023_107390 crossref_primary_10_1016_j_cose_2022_102670 crossref_primary_10_1186_s40537_025_01157_y crossref_primary_10_1155_2022_5108338 crossref_primary_10_1016_j_patrec_2021_02_004 crossref_primary_10_3390_electronics10020186 crossref_primary_10_1016_j_comnet_2021_108618 crossref_primary_10_1007_s10586_022_03717_w crossref_primary_10_1093_comjnl_bxac114 crossref_primary_10_1109_TDSC_2024_3352604 crossref_primary_10_1016_j_eswa_2023_121617 crossref_primary_10_1109_ACCESS_2020_3002842 crossref_primary_10_1016_j_iot_2024_101320 crossref_primary_10_1155_2021_8736946 crossref_primary_10_3390_electronics13173553 crossref_primary_10_1016_j_eswa_2025_127888 crossref_primary_10_1002_cpe_6980 crossref_primary_10_1016_j_future_2021_02_015 crossref_primary_10_3390_s22176562 crossref_primary_10_1007_s42154_022_00205_0 crossref_primary_10_1111_exsy_13488 crossref_primary_10_1108_IJPCC_06_2022_0236 crossref_primary_10_3390_math8030410 crossref_primary_10_1109_ACCESS_2020_3008433 crossref_primary_10_1016_j_cose_2021_102386 crossref_primary_10_1145_3717607 crossref_primary_10_47164_ijngc_v13i3_807 crossref_primary_10_1016_j_future_2022_08_002 crossref_primary_10_1007_s11416_023_00506_w crossref_primary_10_1007_s10586_020_03083_5 crossref_primary_10_1186_s13104_024_06791_y crossref_primary_10_7717_peerj_cs_1043 crossref_primary_10_1016_j_neucom_2020_09_082 crossref_primary_10_1080_19393555_2021_1934198 |
| Cites_doi | 10.1109/TIFS.2018.2879302 10.1109/TST.2016.7399288 10.1007/s11416-013-0184-5 10.1109/TIFS.2018.2806891 10.1080/0161-119591883944 10.1109/SP.2012.16 10.1109/ACCESS.2019.2896003 10.1016/j.future.2017.01.019 10.1007/s11416-012-0171-2 10.1016/j.cose.2019.02.007 10.1109/MSP.2009.26 10.1016/j.neucom.2019.01.105 10.1016/j.future.2018.02.001 10.1016/j.eswa.2008.01.039 10.1016/j.future.2019.03.006 10.1109/ACCESS.2018.2844349 10.1016/j.patrec.2010.03.014 10.1007/s11416-016-0277-z 10.14722/ndss.2014.23247 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.future.2019.11.034 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 247 |
| ExternalDocumentID | 10_1016_j_future_2019_11_034 S0167739X19315122 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABDPE ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AFJKZ AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIIUN AIKHN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- ~HD 9DU AAYXX ACLOT CITATION |
| ID | FETCH-LOGICAL-c306t-e2f9bbd2ae2c9a95e8f5517623e821ce9fbd20a4a4f2f2a2afc924db06851c83 |
| ISICitedReferencesCount | 124 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000515213000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-739X |
| IngestDate | Sat Nov 29 06:59:54 EST 2025 Tue Nov 18 21:56:59 EST 2025 Sat Sep 13 17:02:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hamming distance Clustering Malware detection K-nearest neighbor (KNN) Static analysis Android |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-e2f9bbd2ae2c9a95e8f5517623e821ce9fbd20a4a4f2f2a2afc924db06851c83 |
| PageCount | 18 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_future_2019_11_034 crossref_primary_10_1016_j_future_2019_11_034 elsevier_sciencedirect_doi_10_1016_j_future_2019_11_034 |
| PublicationCentury | 2000 |
| PublicationDate | April 2020 2020-04-00 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Future generation computer systems |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Vidas, Christin (b34) 2014 Bläsing, Batyuk, Schmidt, Camtepe, Albayrak (b39) 2010 Faruki, Ganmoor, Laxmi, Gaur, Bharmal (b32) 2013 (b29) 2018 Meng, Xiong, Huang, Qin, Jin, Yan (b12) 2019; 341 Razaque, Xihao, Liangjie, Almiani, Jararweh, Khan (b6) 2018 Genuer, Poggi, Tuleau-Malot (b25) 2010; 31 Canfora, Medvet, Mercaldo, Visaggio (b31) 2016 Yuan, Lu, Xue (b36) 2016; 21 (b37) 2019 Wang, Li, Wang, Liu, Zhang (b8) 2018; 78 X. Jiang, Y. Zhou, Dissecting android malware: Characterization and evolution, in: Proc. of IEEE S&P, 2012, pp. 95–109. (b2) 2019 Vicente (b3) 2018 Martín, Hernández, de los Santos (b15) 2019 Wang, Li, Wang, Liu, Zhang (b20) 2018; 78 Han, Xue, Wang, Huang, Kong, Mao (b11) 2019; 83 D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, C. Siemens, Drebin: Effective and explainable detection of android malware in your pocket, in: Ndss, Vol. 14, 2014, pp. 23–26. Chen, Xue, Tang, Xu, Zhu (b27) 2016 Park, Jun (b44) 2009; 36 Enck, Ongtang, McDaniel (b35) 2009; 7 Feng, Ma, Sun, Xu, Ma (b13) 2018; 6 (b4) 2009 Demontis (b43) 2018; PP Cai, Meng, Ryder, Yao (b10) 2019; 14 Shanmugam, Low, Stamp (b18) 2013; 9 (b5) 2017 Al-Sharif, Al-Saleh, Alawneh, Jararweh, Gupta (b9) 2018 Fan, Liu, Luo, Chen, Tian, Zheng, Liu (b21) 2018; 13 Zhang (b28) 2014 (b38) 2019 Fereidooni, Conti, Yao, Sperduti (b30) 2016 Radkani, Hashemi, Keshavarz-Haddad, Haeri (b19) 2018 Roussev (b33) 2009 (b1) 2019 P. Vinod, R. Jaipur, V. Laxmi, M. Gaur, Survey on malware detection methods, in: Proceedings of the 3rd Hackers’ Workshop on Computer and Internet Security, IITKHACK’09, 2009, pp. 74–79. Toderici, Stamp (b42) 2013; 9 Rad, Masrom, Ibrahim, Ibrahim (b17) 2011 (b46) 2019 Ma, Ge, Liu, Zhao, Ma (b14) 2019; 7 Jakobsen (b40) 1995; 19 Saracino (b24) 2016 Rad, Masrom (b41) 2011 Kumar, Kuppusamy, Aghila (b16) 2018; 83 Varsha, Vinod, Dhanya (b22) 2017; 13 Xiong (b23) 2018 (10.1016/j.future.2019.11.034_b2) 2019 Xiong (10.1016/j.future.2019.11.034_b23) 2018 Jakobsen (10.1016/j.future.2019.11.034_b40) 1995; 19 (10.1016/j.future.2019.11.034_b46) 2019 Enck (10.1016/j.future.2019.11.034_b35) 2009; 7 Wang (10.1016/j.future.2019.11.034_b20) 2018; 78 Radkani (10.1016/j.future.2019.11.034_b19) 2018 Han (10.1016/j.future.2019.11.034_b11) 2019; 83 Feng (10.1016/j.future.2019.11.034_b13) 2018; 6 Genuer (10.1016/j.future.2019.11.034_b25) 2010; 31 Fereidooni (10.1016/j.future.2019.11.034_b30) 2016 Kumar (10.1016/j.future.2019.11.034_b16) 2018; 83 Rad (10.1016/j.future.2019.11.034_b17) 2011 Vidas (10.1016/j.future.2019.11.034_b34) 2014 Al-Sharif (10.1016/j.future.2019.11.034_b9) 2018 (10.1016/j.future.2019.11.034_b38) 2019 10.1016/j.future.2019.11.034_b7 Vicente (10.1016/j.future.2019.11.034_b3) 2018 Demontis (10.1016/j.future.2019.11.034_b43) 2018; PP (10.1016/j.future.2019.11.034_b1) 2019 Cai (10.1016/j.future.2019.11.034_b10) 2019; 14 Fan (10.1016/j.future.2019.11.034_b21) 2018; 13 10.1016/j.future.2019.11.034_b26 10.1016/j.future.2019.11.034_b45 Ma (10.1016/j.future.2019.11.034_b14) 2019; 7 Faruki (10.1016/j.future.2019.11.034_b32) 2013 Razaque (10.1016/j.future.2019.11.034_b6) 2018 Zhang (10.1016/j.future.2019.11.034_b28) 2014 Toderici (10.1016/j.future.2019.11.034_b42) 2013; 9 Roussev (10.1016/j.future.2019.11.034_b33) 2009 (10.1016/j.future.2019.11.034_b29) 2018 (10.1016/j.future.2019.11.034_b5) 2017 Canfora (10.1016/j.future.2019.11.034_b31) 2016 Shanmugam (10.1016/j.future.2019.11.034_b18) 2013; 9 Wang (10.1016/j.future.2019.11.034_b8) 2018; 78 Meng (10.1016/j.future.2019.11.034_b12) 2019; 341 Varsha (10.1016/j.future.2019.11.034_b22) 2017; 13 Park (10.1016/j.future.2019.11.034_b44) 2009; 36 (10.1016/j.future.2019.11.034_b4) 2009 Martín (10.1016/j.future.2019.11.034_b15) 2019 (10.1016/j.future.2019.11.034_b37) 2019 Saracino (10.1016/j.future.2019.11.034_b24) 2016 Yuan (10.1016/j.future.2019.11.034_b36) 2016; 21 Chen (10.1016/j.future.2019.11.034_b27) 2016 Bläsing (10.1016/j.future.2019.11.034_b39) 2010 Rad (10.1016/j.future.2019.11.034_b41) 2011 |
| References_xml | – year: 2019 ident: b2 article-title: Sophos mobile security threat reports – start-page: 377 year: 2016 end-page: 388 ident: b27 article-title: Stormdroid: A streaminglized machine learning-based system for detecting android malware publication-title: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security – volume: 78 start-page: 987 year: 2018 end-page: 994 ident: b20 article-title: Detecting Android malicious apps and categorizing benign apps with ensemble of classifiers publication-title: Future Gener. Comput. Syst. – start-page: 239 year: 2018 end-page: 243 ident: b6 article-title: Naïve Bayesian And fuzzy c-means algorithm for mobile malware detection precision publication-title: 2018 Fifth International Conference on Internet of Things: Systems, Management and Security – year: 2018 ident: b3 article-title: Kaspersky security bulletin 2018 – reference: X. Jiang, Y. Zhou, Dissecting android malware: Characterization and evolution, in: Proc. of IEEE S&P, 2012, pp. 95–109. – year: 2019 ident: b46 article-title: Contagio dataset – volume: 7 start-page: 21235 year: 2019 end-page: 21245 ident: b14 article-title: A combination method for android malware detection based on control flow graphs and machine learning algorithms publication-title: IEEE Access – start-page: 1105 year: 2014 end-page: -1116 ident: b28 article-title: Drebin: Effective and explainable detection of Android malware in your pocket publication-title: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security – year: 2017 ident: b5 article-title: GData – volume: 78 start-page: 987 year: 2018 end-page: 994 ident: b8 article-title: Detecting Android malicious apps and categorizing benign apps with ensemble of classifiers publication-title: Future Gener. Comput. Syst. – year: 2019 ident: b1 article-title: Global mobile statistics 2014 – reference: D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, C. Siemens, Drebin: Effective and explainable detection of android malware in your pocket, in: Ndss, Vol. 14, 2014, pp. 23–26. – volume: 21 start-page: 114 year: 2016 end-page: 123 ident: b36 article-title: Droiddetector: android malware characterization and detection using deep learning publication-title: Tsinghua Sci. Technol. – year: 2019 ident: b38 article-title: 7-Zip – year: 2009 ident: b4 article-title: Google play store statistics 2009 – volume: PP year: 2018 ident: b43 article-title: Yes, machine learning can be more secure! a case study on android malware detection publication-title: IEEE Trans. Dependable Secure Comput. – start-page: 50 year: 2016 end-page: 57 ident: b31 article-title: Acquiring and analyzing app metrics for effective mobile malware detection publication-title: Proceedings of the 2016 ACM on International Workshop on Security and Privacy Analytics – volume: 341 start-page: 10 year: 2019 end-page: 25 ident: b12 article-title: AppScalpel: Combining static analysis and outlier detection to identify and prune undesirable usage of sensitive data in android applications publication-title: Neurocomputing – volume: 13 start-page: 1890 year: 2018 end-page: 1905 ident: b21 article-title: Android malware familial classification and representative sample selection via frequent subgraph analysis publication-title: IEEE Trans. Inf. Forensics Secur. – start-page: 1 year: 2016 end-page: 5 ident: b30 article-title: ANASTASIA: Android malware detection using static analysis of applications publication-title: 2016 8th IFIP International Conference on New Technologies, Mobility and Security – start-page: 152 year: 2013 end-page: 159 ident: b32 article-title: AndroSimilar: robust statistical feature signature for Android malware detection publication-title: Proceedings of the 6th International Conference on Security of Information and Networks – start-page: 447 year: 2014 end-page: 458 ident: b34 article-title: Evading android runtime analysis via sandbox detection publication-title: Proceedings of the 9th ACM Symposium on Information, Computer and Communications Security – start-page: 1 year: 2009 end-page: 10 ident: b33 article-title: Building a better similarity trap with statistically improbable features publication-title: 2009 42nd Hawaii International Conference on System Sciences – reference: P. Vinod, R. Jaipur, V. Laxmi, M. Gaur, Survey on malware detection methods, in: Proceedings of the 3rd Hackers’ Workshop on Computer and Internet Security, IITKHACK’09, 2009, pp. 74–79. – volume: 9 start-page: 1 year: 2013 end-page: 14 ident: b42 article-title: Chi-squared distance and metamorphic virus detection publication-title: J. Comput. Virology Hacking Tech. – start-page: 411 year: 2018 end-page: 422 ident: b23 article-title: Android malware detection methods based on the combination of clustering and classification publication-title: International Conference on Network and System Security – year: 2019 ident: b15 article-title: Machine-Learning based analysis and classification of Android malware signatures publication-title: Future Gener. Comput. Syst. – start-page: 123 year: 2011 end-page: 131 ident: b17 article-title: Morphed virus family classification based on opcodes statistical feature using decision tree publication-title: International Conference on Informatics Engineering and Information Science – volume: 83 start-page: 158 year: 2018 end-page: 172 ident: b16 article-title: FAMOUS: Forensic analysis of mobile devices using scoring of application permissions publication-title: Future Gener. Comput. Syst. – year: 2011 ident: b41 article-title: Metamorphic virus variants classification using opcode frequency histogram – year: 2018 ident: b29 article-title: Android developer dashboard – volume: 31 start-page: 2225 year: 2010 end-page: 2236 ident: b25 article-title: Variable selection using random forests publication-title: Pattern Recognit. Lett. – volume: 13 start-page: 125 year: 2017 end-page: 138 ident: b22 article-title: Identification of malicious android app using manifest and opcode features publication-title: J. Comput. Virology Hacking Tech. – volume: 19 start-page: 265 year: 1995 end-page: 274 ident: b40 article-title: A fast method for cryptanalysis of substitution ciphers publication-title: Cryptologia – volume: 36 start-page: 3336 year: 2009 end-page: 3341 ident: b44 article-title: A simple and fast algorithm for K-medoids clustering publication-title: Expert Syst. Appl. – year: 2018 ident: b9 article-title: Live forensics of software attacks on cyber–physical systems publication-title: Future Gener. Comput. Syst. – volume: 9 start-page: 159 year: 2013 end-page: 170 ident: b18 article-title: Simple substitution distance and metamorphic detection publication-title: J. Comput. Virol. Hacking Tech. – year: 2016 ident: b24 article-title: Madam: Effective and efficient behavior-based Android malware detection and prevention publication-title: IEEE Trans. Dependable Secure Comput. – volume: 7 start-page: 50 year: 2009 end-page: 57 ident: b35 article-title: Understanding android security publication-title: IEEE Secur. Priv. – year: 2019 ident: b37 article-title: TinyXML – volume: 14 start-page: 1455 year: 2019 end-page: 1470 ident: b10 article-title: Droidcat: Effective android malware detection and categorization via app-level profiling publication-title: IEEE Trans. Inf. Forensics Secur. – start-page: 1 year: 2018 end-page: 11 ident: b19 article-title: An entropy-based distance measure for analyzing and detecting metamorphic malware publication-title: Appl. Intell. – start-page: 55 year: 2010 end-page: 62 ident: b39 article-title: An android application sandbox system for suspicious software detection publication-title: 2010 5th International Conference on Malicious and Unwanted Software – volume: 83 start-page: 208 year: 2019 end-page: 233 ident: b11 article-title: MalDAE: Detecting and explaining malware based on correlation and fusion of static and dynamic characteristics publication-title: Comput. Secur. – volume: 6 start-page: 30996 year: 2018 end-page: 31011 ident: b13 article-title: A novel dynamic android malware detection system with ensemble learning publication-title: IEEE Access – start-page: 1 year: 2016 ident: 10.1016/j.future.2019.11.034_b30 article-title: ANASTASIA: Android malware detection using static analysis of applications – volume: 14 start-page: 1455 issue: 6 year: 2019 ident: 10.1016/j.future.2019.11.034_b10 article-title: Droidcat: Effective android malware detection and categorization via app-level profiling publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2018.2879302 – volume: 21 start-page: 114 issue: 1 year: 2016 ident: 10.1016/j.future.2019.11.034_b36 article-title: Droiddetector: android malware characterization and detection using deep learning publication-title: Tsinghua Sci. Technol. doi: 10.1109/TST.2016.7399288 – year: 2018 ident: 10.1016/j.future.2019.11.034_b9 article-title: Live forensics of software attacks on cyber–physical systems publication-title: Future Gener. Comput. Syst. – start-page: 1 year: 2018 ident: 10.1016/j.future.2019.11.034_b19 article-title: An entropy-based distance measure for analyzing and detecting metamorphic malware publication-title: Appl. Intell. – year: 2018 ident: 10.1016/j.future.2019.11.034_b3 – volume: 9 start-page: 159 issue: 3 year: 2013 ident: 10.1016/j.future.2019.11.034_b18 article-title: Simple substitution distance and metamorphic detection publication-title: J. Comput. Virol. Hacking Tech. doi: 10.1007/s11416-013-0184-5 – start-page: 50 year: 2016 ident: 10.1016/j.future.2019.11.034_b31 article-title: Acquiring and analyzing app metrics for effective mobile malware detection – start-page: 123 year: 2011 ident: 10.1016/j.future.2019.11.034_b17 article-title: Morphed virus family classification based on opcodes statistical feature using decision tree – year: 2019 ident: 10.1016/j.future.2019.11.034_b38 – volume: 13 start-page: 1890 issue: 8 year: 2018 ident: 10.1016/j.future.2019.11.034_b21 article-title: Android malware familial classification and representative sample selection via frequent subgraph analysis publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2018.2806891 – volume: 19 start-page: 265 issue: 3 year: 1995 ident: 10.1016/j.future.2019.11.034_b40 article-title: A fast method for cryptanalysis of substitution ciphers publication-title: Cryptologia doi: 10.1080/0161-119591883944 – ident: 10.1016/j.future.2019.11.034_b45 doi: 10.1109/SP.2012.16 – start-page: 1 year: 2009 ident: 10.1016/j.future.2019.11.034_b33 article-title: Building a better similarity trap with statistically improbable features – volume: 7 start-page: 21235 year: 2019 ident: 10.1016/j.future.2019.11.034_b14 article-title: A combination method for android malware detection based on control flow graphs and machine learning algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2896003 – volume: PP issue: 99 year: 2018 ident: 10.1016/j.future.2019.11.034_b43 article-title: Yes, machine learning can be more secure! a case study on android malware detection publication-title: IEEE Trans. Dependable Secure Comput. – volume: 78 start-page: 987 year: 2018 ident: 10.1016/j.future.2019.11.034_b20 article-title: Detecting Android malicious apps and categorizing benign apps with ensemble of classifiers publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.01.019 – start-page: 55 year: 2010 ident: 10.1016/j.future.2019.11.034_b39 article-title: An android application sandbox system for suspicious software detection – volume: 9 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.future.2019.11.034_b42 article-title: Chi-squared distance and metamorphic virus detection publication-title: J. Comput. Virology Hacking Tech. doi: 10.1007/s11416-012-0171-2 – volume: 83 start-page: 208 year: 2019 ident: 10.1016/j.future.2019.11.034_b11 article-title: MalDAE: Detecting and explaining malware based on correlation and fusion of static and dynamic characteristics publication-title: Comput. Secur. doi: 10.1016/j.cose.2019.02.007 – start-page: 1105 year: 2014 ident: 10.1016/j.future.2019.11.034_b28 article-title: Drebin: Effective and explainable detection of Android malware in your pocket – start-page: 447 year: 2014 ident: 10.1016/j.future.2019.11.034_b34 article-title: Evading android runtime analysis via sandbox detection – volume: 7 start-page: 50 issue: 1 year: 2009 ident: 10.1016/j.future.2019.11.034_b35 article-title: Understanding android security publication-title: IEEE Secur. Priv. doi: 10.1109/MSP.2009.26 – volume: 341 start-page: 10 year: 2019 ident: 10.1016/j.future.2019.11.034_b12 article-title: AppScalpel: Combining static analysis and outlier detection to identify and prune undesirable usage of sensitive data in android applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.105 – volume: 83 start-page: 158 year: 2018 ident: 10.1016/j.future.2019.11.034_b16 article-title: FAMOUS: Forensic analysis of mobile devices using scoring of application permissions publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.02.001 – year: 2018 ident: 10.1016/j.future.2019.11.034_b29 – year: 2019 ident: 10.1016/j.future.2019.11.034_b2 – volume: 36 start-page: 3336 issue: 2 year: 2009 ident: 10.1016/j.future.2019.11.034_b44 article-title: A simple and fast algorithm for K-medoids clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.01.039 – year: 2019 ident: 10.1016/j.future.2019.11.034_b15 article-title: Machine-Learning based analysis and classification of Android malware signatures publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.03.006 – volume: 6 start-page: 30996 year: 2018 ident: 10.1016/j.future.2019.11.034_b13 article-title: A novel dynamic android malware detection system with ensemble learning publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2844349 – year: 2016 ident: 10.1016/j.future.2019.11.034_b24 article-title: Madam: Effective and efficient behavior-based Android malware detection and prevention publication-title: IEEE Trans. Dependable Secure Comput. – start-page: 411 year: 2018 ident: 10.1016/j.future.2019.11.034_b23 article-title: Android malware detection methods based on the combination of clustering and classification – year: 2019 ident: 10.1016/j.future.2019.11.034_b46 – ident: 10.1016/j.future.2019.11.034_b7 – start-page: 377 year: 2016 ident: 10.1016/j.future.2019.11.034_b27 article-title: Stormdroid: A streaminglized machine learning-based system for detecting android malware – volume: 31 start-page: 2225 issue: 14 year: 2010 ident: 10.1016/j.future.2019.11.034_b25 article-title: Variable selection using random forests publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2010.03.014 – year: 2019 ident: 10.1016/j.future.2019.11.034_b1 – year: 2011 ident: 10.1016/j.future.2019.11.034_b41 – volume: 78 start-page: 987 year: 2018 ident: 10.1016/j.future.2019.11.034_b8 article-title: Detecting Android malicious apps and categorizing benign apps with ensemble of classifiers publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.01.019 – volume: 13 start-page: 125 issue: 2 year: 2017 ident: 10.1016/j.future.2019.11.034_b22 article-title: Identification of malicious android app using manifest and opcode features publication-title: J. Comput. Virology Hacking Tech. doi: 10.1007/s11416-016-0277-z – ident: 10.1016/j.future.2019.11.034_b26 doi: 10.14722/ndss.2014.23247 – start-page: 152 year: 2013 ident: 10.1016/j.future.2019.11.034_b32 article-title: AndroSimilar: robust statistical feature signature for Android malware detection – year: 2019 ident: 10.1016/j.future.2019.11.034_b37 – year: 2009 ident: 10.1016/j.future.2019.11.034_b4 – start-page: 239 year: 2018 ident: 10.1016/j.future.2019.11.034_b6 article-title: Naïve Bayesian And fuzzy c-means algorithm for mobile malware detection precision – year: 2017 ident: 10.1016/j.future.2019.11.034_b5 |
| SSID | ssj0001731 |
| Score | 2.6177144 |
| Snippet | In this paper, we develop four malware detection methods using Hamming distance to find similarity between samples which are first nearest neighbors (FNN), all... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 230 |
| SubjectTerms | Android Clustering Hamming distance K-nearest neighbor (KNN) Malware detection Static analysis |
| Title | Similarity-based Android malware detection using Hamming distance of static binary features |
| URI | https://dx.doi.org/10.1016/j.future.2019.11.034 |
| Volume | 105 |
| WOSCitedRecordID | wos000515213000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0167-739X databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001731 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5tAEF65Tg-9NH0qr1Z76M0iggUb9hhFidpIiarGB0s9oGUfAsuGyHHSKD-lv7az7LChSZU2h16wBWaNPR8z3wzzIOSTSMOoABoN2k_LINFcBdxwFhTjUCUy1ZNQhe2wifTsLJvN-NfB4GdXC3O9SOs6u7nhF_9V1LAPhG1LZ58gbr8o7ID3IHTYgthh-0-CP6-WFbirwK4Da6JUm7PYVGq0FIsfNs9L6bV2A8Kv2kCBDV7bV2WppL3PgT_aOqNKjgpXrWt02_7zss9kj9tmJHYCs0YQSRwQgd2hPVmfihLr2b-Jslr6jJ9SlCuxdDOlRqeAKOGPndhMe3xCpW-95Tgvm7kwLiX8tCnhuoXqhy1Y2Mt2wUgmaOg0bufo3qnicNxXpvjExtll5jpzPlD5Lvow33c9WGyyHt-3fVkxRvpbh-17ls_nI3apbvPcrZLbVcA5ymGVZ2SDpWOeDcnGwZej2Ym381GK0y7xh3SFmW324MOr-TPx6ZGZ6SvyEr0QeuDQ85oMdP2GbHYTPigq_Lfk-30wUQQTRTBRDybagokimGgHJtoY6sBEHZhoB6Z3ZHp8ND38HOA4jkCCX7kONDO8KBQTmkku-FhnBug2GNNYZyySmhs4GIpEJIYZJpgwEpx7VYQTYPUyi9-TYd3UeotQFmllJkKCtZSJYpMsDkWkTKHBmEie8G0Sd39VLrFVvZ2YssgfE9Q2CfxZF65Vy18-n3ZSyJFuOhqZA7QePXPnid-0S17c3QJ7ZLheXekP5Lm8XleXq4-Iq1912aok |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Similarity-based+Android+malware+detection+using+Hamming+distance+of+static+binary+features&rft.jtitle=Future+generation+computer+systems&rft.au=Taheri%2C+Rahim&rft.au=Ghahramani%2C+Meysam&rft.au=Javidan%2C+Reza&rft.au=Shojafar%2C+Mohammad&rft.date=2020-04-01&rft.issn=0167-739X&rft.volume=105&rft.spage=230&rft.epage=247&rft_id=info:doi/10.1016%2Fj.future.2019.11.034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2019_11_034 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |