Improved YOLOX-X based UAV aerial photography object detection algorithm
•The slicing aided hyper inference with data augmentation pre-processing dataset facilitates the detection of small objects.•The introduction of shallow feature maps can effectively improve the performance of small objects.•The Ultra-lightweight subspace attention module highlights the object inform...
Saved in:
| Published in: | Image and vision computing Vol. 135; p. 104697 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.07.2023
|
| Subjects: | |
| ISSN: | 0262-8856 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •The slicing aided hyper inference with data augmentation pre-processing dataset facilitates the detection of small objects.•The introduction of shallow feature maps can effectively improve the performance of small objects.•The Ultra-lightweight subspace attention module highlights the object information and weakens the background information.•The optimization of loss function improved the training speed and prediction accuracy.
Unmanned Aerial Vehicle (UAV) aerial photography object detection has high research significance in the fields of disaster rescue, ecological environmental protection, and military reconnaissance. The larger width of UAV photography introduces background interference into the detection task, whereas the relatively high imaging height of the UAV results in mostly small objects in the aerial images. YOLOX-X operated fast and achieved advanced results on MS COCO of natural scene images, so YOLOX-X was used as the baseline network in this paper. A UAV aerial photography object detection algorithm YOLOX_w with improved YOLOX-X is proposed to handle the characteristics of complex backgrounds and the large number of small objects in UAV aerial photography images. The model’s performance in detecting small objects is first improved by preprocessing the training set with the slicing aided hyper inference (SAHI) algorithm and by data augmentation. Then, a shallow feature map with rich spatial information is introduced into the path aggregation network (PAN), and a detection head is added to detect small objects. Next, the ultra-lightweight subspace attention module (ULSAM) is added to the PAN stage to highlight the target features and weaken the background features, which improves the detection accuracy of the network. Finally, the loss function of the bounding box regression is optimized to further improve network prediction accuracy. Experimental results on the VisDrone dataset demonstrate that the detection accuracy of the proposed YOLOX_w algorithm improved by 8% when compared with the baseline YOLOX-X. Moreover, migration experiments on the DIOR dataset verify the effectiveness and robustness of the improved method. |
|---|---|
| AbstractList | •The slicing aided hyper inference with data augmentation pre-processing dataset facilitates the detection of small objects.•The introduction of shallow feature maps can effectively improve the performance of small objects.•The Ultra-lightweight subspace attention module highlights the object information and weakens the background information.•The optimization of loss function improved the training speed and prediction accuracy.
Unmanned Aerial Vehicle (UAV) aerial photography object detection has high research significance in the fields of disaster rescue, ecological environmental protection, and military reconnaissance. The larger width of UAV photography introduces background interference into the detection task, whereas the relatively high imaging height of the UAV results in mostly small objects in the aerial images. YOLOX-X operated fast and achieved advanced results on MS COCO of natural scene images, so YOLOX-X was used as the baseline network in this paper. A UAV aerial photography object detection algorithm YOLOX_w with improved YOLOX-X is proposed to handle the characteristics of complex backgrounds and the large number of small objects in UAV aerial photography images. The model’s performance in detecting small objects is first improved by preprocessing the training set with the slicing aided hyper inference (SAHI) algorithm and by data augmentation. Then, a shallow feature map with rich spatial information is introduced into the path aggregation network (PAN), and a detection head is added to detect small objects. Next, the ultra-lightweight subspace attention module (ULSAM) is added to the PAN stage to highlight the target features and weaken the background features, which improves the detection accuracy of the network. Finally, the loss function of the bounding box regression is optimized to further improve network prediction accuracy. Experimental results on the VisDrone dataset demonstrate that the detection accuracy of the proposed YOLOX_w algorithm improved by 8% when compared with the baseline YOLOX-X. Moreover, migration experiments on the DIOR dataset verify the effectiveness and robustness of the improved method. |
| ArticleNumber | 104697 |
| Author | Wang, Qi Chen, Ming He, Ning Hong, Chen Wang, Xin |
| Author_xml | – sequence: 1 givenname: Xin surname: Wang fullname: Wang, Xin email: wang_xin_nihao@163.com organization: College of Smart City, Beijing Union University, Beijing 100101, China – sequence: 2 givenname: Ning surname: He fullname: He, Ning email: xxthening@buu.edu.cn organization: College of Smart City, Beijing Union University, Beijing 100101, China – sequence: 3 givenname: Chen surname: Hong fullname: Hong, Chen email: hchchina@sina.com organization: College of Robotics, Beijing Union University, Beijing 100101, China – sequence: 4 givenname: Qi surname: Wang fullname: Wang, Qi email: wangqi981124@163.com organization: College of Robotics, Beijing Union University, Beijing 100101, China – sequence: 5 givenname: Ming surname: Chen fullname: Chen, Ming email: 53192877@qq.com organization: College of Robotics, Beijing Union University, Beijing 100101, China |
| BookMark | eNqFkLFqwzAQhjWk0CTtG3TQCziVZEuWOxRCaJtAIEtT0knI0iWRcSwjmUDevg7O1KGdjjvu-7n7JmjU-AYQeqJkRgkVz9XMnfTZxRkjLO1HmSjyERoTJlgiJRf3aBJjRQjJSV6M0XJ1aoM_g8Xfm_Vml-xwqWPfbedfWENwusbt0Xf-EHR7vGBfVmA6bKHri_MN1vXBB9cdTw_obq_rCI-3OkXb97fPxTJZbz5Wi_k6MSkRXQIkpVKn1gKUJQUDJuUGONCcg9SysKawLOWyZFJSyKAoDBc8E5TtGWemTKfoZcg1wccYYK-M6_T1li5oVytK1NWDqtTgQV09qMFDD2e_4Db0a-HyH_Y6YNA_dnYQVDQOGgPWhd6Dst79HfADxIh-ew |
| CitedBy_id | crossref_primary_10_1016_j_imavis_2023_104856 crossref_primary_10_1016_j_imavis_2024_105190 crossref_primary_10_1007_s11760_024_03337_4 crossref_primary_10_32604_cmes_2024_050140 crossref_primary_10_1007_s11760_025_03952_9 crossref_primary_10_1007_s10044_024_01337_1 crossref_primary_10_1038_s41598_024_80830_3 crossref_primary_10_32604_cmc_2025_060873 crossref_primary_10_3390_drones8050186 crossref_primary_10_1016_j_ijepes_2025_111019 crossref_primary_10_3390_drones8070316 crossref_primary_10_1016_j_knosys_2025_113253 crossref_primary_10_3390_rs17152708 crossref_primary_10_3390_s24175759 crossref_primary_10_3390_biomimetics10080499 crossref_primary_10_1007_s10586_025_05452_4 crossref_primary_10_1007_s00521_025_11446_5 crossref_primary_10_1007_s40747_024_01652_4 crossref_primary_10_1109_JSTARS_2024_3474689 crossref_primary_10_1109_TIM_2024_3381272 crossref_primary_10_1109_TIM_2025_3544321 crossref_primary_10_1007_s00371_024_03591_0 crossref_primary_10_1109_ACCESS_2025_3538608 crossref_primary_10_1016_j_imavis_2025_105485 crossref_primary_10_1016_j_dsp_2024_104789 crossref_primary_10_1016_j_ress_2024_110185 crossref_primary_10_1007_s00371_024_03689_5 crossref_primary_10_1016_j_aej_2025_09_001 crossref_primary_10_3390_agronomy14092041 crossref_primary_10_3390_s24144526 crossref_primary_10_1016_j_engappai_2025_110488 crossref_primary_10_3390_s25175556 crossref_primary_10_3390_electronics14081548 crossref_primary_10_3390_app14188470 crossref_primary_10_3390_electronics12163497 crossref_primary_10_1016_j_neucom_2024_129057 crossref_primary_10_1109_ACCESS_2024_3490610 crossref_primary_10_1002_rob_22592 crossref_primary_10_1016_j_compeleceng_2025_110413 crossref_primary_10_1007_s11761_024_00388_w crossref_primary_10_3390_s24010134 crossref_primary_10_1371_journal_pone_0325527 crossref_primary_10_1016_j_patcog_2025_111717 crossref_primary_10_1109_JSEN_2024_3362982 crossref_primary_10_1007_s11042_024_19611_z crossref_primary_10_1038_s41598_023_50306_x crossref_primary_10_2174_0126662558333174241009112642 crossref_primary_10_1088_1361_6501_ad82ff crossref_primary_10_1016_j_knosys_2025_113983 crossref_primary_10_1117_1_JEI_34_2_023026 |
| Cites_doi | 10.3390/rs12091432 10.1007/978-3-030-58583-9_34 10.1109/CVPR.2016.91 10.1109/ICAIIC51459.2021.9415217 10.1016/j.isprsjprs.2019.11.023 10.1109/CVPR.2014.81 10.1145/3446999.3447023 10.1007/978-3-319-10602-1_48 10.1109/ICIP.1994.413553 10.1109/ICPR48806.2021.9412847 10.1109/TPAMI.2015.2389824 10.1109/ICIP46576.2022.9897990 10.1109/IVCNZ.2018.8634752 10.1109/TGRS.2019.2899955 10.1109/ICCV.2015.169 10.1109/CVPR.2016.90 10.1145/2964284.2967274 10.1109/TMM.2021.3074273 10.1109/CVPR52729.2023.00721 10.5121/csit.2019.91713 10.1007/978-3-319-46448-0_2 10.1016/j.neucom.2021.03.016 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.imavis.2023.104697 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| ExternalDocumentID | 10_1016_j_imavis_2023_104697 S0262885623000719 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABDPE ABFNM ABFRF ABJNI ABMAC ABOCM ABTAH ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS UNMZH VOH WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c306t-e0318a3ddeebb1ecec35ce5e175e8a89dc9d2358b2881e4e99c5654612f252cb3 |
| ISICitedReferencesCount | 65 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001011531900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0262-8856 |
| IngestDate | Sat Nov 29 07:22:09 EST 2025 Tue Nov 18 21:19:00 EST 2025 Tue Dec 03 03:44:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Small objects YOLOX UAV aerial photography Object detection |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-e0318a3ddeebb1ecec35ce5e175e8a89dc9d2358b2881e4e99c5654612f252cb3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_imavis_2023_104697 crossref_primary_10_1016_j_imavis_2023_104697 elsevier_sciencedirect_doi_10_1016_j_imavis_2023_104697 |
| PublicationCentury | 2000 |
| PublicationDate | July 2023 2023-07-00 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Image and vision computing |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | X. Yang, J. Yan, Q. Ming, W. Wang, X. Zhang, Q. Tian, Rethinking rotated object detection with gaussian wasserstein distance loss, in: International Conference on Machine Learning, PMLR, pp. 11830–11841. Z. Ge, S. Liu, F. Wang, Z. Li, J. Sun, Yolox: Exceeding yolo series in 2021, arXiv preprint arXiv:2107.08430 (2021). A. Ajmal, C. Hollitt, M. Frean, H. Al-Sahaf, A comparison of rgb and hsv colour spaces for visual attention models, in: 2018 International conference on image and vision computing New Zealand (IVCNZ), IEEE, pp. 1–6. B. Zoph, E.D. Cubuk, G. Ghiasi, T.-Y. Lin, J. Shlens, Q.V. Le, Learning data augmentation strategies for object detection, in: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVII 16, Springer, pp. 566–583. X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, C. Change Loy, Esrgan: Enhanced super-resolution generative adversarial networks, in: Proceedings of the European conference on computer vision (ECCV) workshops, pp. 0–0. C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, A.C. Berg, Dssd: Deconvolutional single shot detector, arXiv preprint arXiv:1701.06659 (2017). J. Li, X. Liang, Y. Wei, T. Xu, J. Feng, S. Yan, Perceptual generative adversarial networks for small object detection, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1222–1230. C. Yang, Z. Huang, N. Wang, Querydet: Cascaded sparse query for accelerating high-resolution small object detection, in: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp. 13668–13677. F.C. Akyon, S.O. Altinuc, A. Temizel, Slicing aided hyper inference and fine-tuning for small object detection, arXiv preprint arXiv:2202.06934 (2022). J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, Y. Wei, Deformable convolutional networks, in: Proceedings of the IEEE international conference on computer vision, pp. 764–773. T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117–2125. X. Zhang, E. Izquierdo, K. Chandramouli, Dense and small object detection in uav vision based on cascade network, in: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A.C. Berg, Ssd: Single shot multibox detector, in: European conference on computer vision, Springer, pp. 21–37. H. Zhang, M. Cisse, Y.N. Dauphin, D. Lopez-Paz, mixup: Beyond empirical risk minimization, arXiv preprint arXiv:1710.09412 (2017). Deng, Wang, Liu, Liu, Jiang (b0155) 2021; 24 Y. Liu, Z. Ding, Y. Cao, M. Chang, Multi-scale feature fusion uav image object detection method based on dilated convolution and attention mechanism, in: 2020 The 8th International Conference on Information Technology: IoT and Smart City, pp. 125–132. F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, arXiv preprint arXiv:1511.07122 (2015). Hong, Li, Yang, Zhu, Zhao, Lu (b0040) 2021; 19 Li, Wan, Cheng, Meng, Han (b0290) 2020; 159 J. Yu, Y. Jiang, Z. Wang, Z. Cao, T. Huang, Unitbox: An advanced object detection network, in: Proceedings of the 24th ACM international conference on Multimedia, pp. 516–520. Rabbi, Ray, Schubert, Chowdhury, Chao (b0050) 2020; 12 S. Yun, D. Han, S.J. Oh, S. Chun, J. Choe, Y. Yoo, Cutmix: Regularization strategy to train strong classifiers with localizable features, in: Proceedings of the IEEE/CVF international conference on computer vision, pp. 6023–6032. C. Guo, B. Fan, Q. Zhang, S. Xiang, C. Pan, Augfpn: Improving multi-scale feature learning for object detection, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12595–12604. G. Jocher, A. Chaurasia, J. Qiu, YOLOv8 by Ultralytics K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778. A.S. Samyal, S. Hans, et al., Analysis and adaptation of yolov4 for object detection in aerial images, arXiv preprint arXiv:2203.10194 (2022). J. Redmon, A. Farhadi, Yolo9000: better, faster, stronger, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263–7271. Y. Liu, H. Li, C. Hu, S. Luo, H. Shen, C.W. Chen, Catnet: context aggregation network for instance segmentation in remote sensing images, arXiv preprint arXiv:2111.11057 (2021). P. Charbonnier, L. Blanc-Feraud, G. Aubert, M. Barlaud, Two deterministic half-quadratic regularization algorithms for computed imaging, in: Proceedings of 1st international conference on image processing, vol. 2, IEEE, pp. 168–172. M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, K. Cho, Augmentation for small object detection, arXiv preprint arXiv:1902.07296 (2019). T. DeVries, G.W. Taylor, Improved regularization of convolutional neural networks with cutout, arXiv preprint arXiv:1708.04552 (2017). C.-Y. Wang, A. Bochkovskiy, H.-Y.M. Liao, Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, arXiv preprint arXiv:2207.02696 (2022). He, Zhang, Ren, Sun (b0225) 2015; 37 B.M. Albaba, S. Ozer, Synet: An ensemble network for object detection in uav images, in: 2020 25th International Conference on Pattern Recognition (ICPR), IEEE, pp. 10227–10234. J.-S. Lim, M. Astrid, H.-J. Yoon, S.-I. Lee, Small object detection using context and attention, in: 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), IEEE, pp. 181–186. Z. Gevorgyan, Siou loss: More powerful learning for bounding box regression, arXiv preprint arXiv:2205.12740 (2022). A. Van Etten, You only look twice: Rapid multi-scale object detection in satellite imagery, arXiv preprint arXiv:1805.09512 (2018). Z. Li, F. Zhou, Fssd: feature fusion single shot multibox detector, arXiv preprint arXiv:1712.00960 (2017). J. Redmon, A. Farhadi, Yolov3: An incremental improvement, arXiv preprint arXiv:1804.02767 (2018). C.-Y. Wang, H.-Y.M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, I.-H. Yeh, Cspnet: A new backbone that can enhance learning capability of cnn, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp. 390–391. Tian, Liu, Yang (b0030) 2021; 443 Jiang, Qu, Li, Li (b0005) 2021; 42 J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788. X. Yang, J. Yang, J. Yan, Y. Zhang, T. Zhang, Z. Guo, X. Sun, K.S. Fu, Towards more robust detection for small, cluttered and rotated objects, in: Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, vol. 27, pp. 8232–8241. 2023. Ren, He, Girshick, Sun (b0075) 2015; 28 Y. Li, Y. Chen, N. Wang, Z. Zhang, Scale-aware trident networks for object detection, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6054–6063. S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path aggregation network for instance segmentation, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8759–8768. Y. Bai, Y. Zhang, M. Ding, B. Ghanem, Sod-mtgan: Small object detection via multi-task generative adversarial network, in: Proceedings of the European Conference on Computer Vision (ECCV), pp. 206–221. D. Du, P. Zhu, L. Wen, X. Bian, H. Lin, Q. Hu, T. Peng, J. Zheng, X. Wang, Y. Zhang, et al., Visdrone-det2019: The vision meets drone object detection in image challenge results, in: Proceedings of the IEEE/CVF international conference on computer vision workshops, pp. 0–0. R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587. 2020. R. Girshick, Fast r-cnn, in: Proceedings of the IEEE international conference on computer vision, pp. 1440–1448. C. Chen, Y. Zhang, Q. Lv, S. Wei, X. Wang, X. Sun, J. Dong, Rrnet: A hybrid detector for object detection in drone-captured images, in: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0. A. Bochkovskiy, C.-Y. Wang, H.-Y.M. Liao, Yolov4: Optimal speed and accuracy of object detection, arXiv preprint arXiv:2004.10934 (2020). R. Saini, N.K. Jha, B. Das, S. Mittal, C.K. Mohan, Ulsam: Ultra-lightweight subspace attention module for compact convolutional neural networks, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1627–1636. G. Jocher, YOLOv5 by Ultralytics Yang, Yang, Yang, Ming, Wang, Tian, Yan (b0210) 2021; 34 Pang, Li, Shi, Xu, Feng (b0035) 2019; 57 T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L. Zitnick, Microsoft coco: Common objects in context, in: European conference on computer vision, Springer, pp. 740–755. T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection, in: Proceedings of the IEEE international conference on computer vision, pp. 2980–2988. 10.1016/j.imavis.2023.104697_b0125 10.1016/j.imavis.2023.104697_b0200 10.1016/j.imavis.2023.104697_b0245 Hong (10.1016/j.imavis.2023.104697_b0040) 2021; 19 10.1016/j.imavis.2023.104697_b0205 10.1016/j.imavis.2023.104697_b0085 10.1016/j.imavis.2023.104697_b0280 10.1016/j.imavis.2023.104697_b0160 10.1016/j.imavis.2023.104697_b0165 10.1016/j.imavis.2023.104697_b0045 Ren (10.1016/j.imavis.2023.104697_b0075) 2015; 28 10.1016/j.imavis.2023.104697_b0240 10.1016/j.imavis.2023.104697_b0120 10.1016/j.imavis.2023.104697_b0285 Yang (10.1016/j.imavis.2023.104697_b0210) 2021; 34 10.1016/j.imavis.2023.104697_b0090 10.1016/j.imavis.2023.104697_b0235 10.1016/j.imavis.2023.104697_b0115 10.1016/j.imavis.2023.104697_b0150 Jiang (10.1016/j.imavis.2023.104697_b0005) 2021; 42 10.1016/j.imavis.2023.104697_b0195 10.1016/j.imavis.2023.104697_b0270 Tian (10.1016/j.imavis.2023.104697_b0030) 2021; 443 10.1016/j.imavis.2023.104697_b0110 10.1016/j.imavis.2023.104697_b0275 10.1016/j.imavis.2023.104697_b0230 He (10.1016/j.imavis.2023.104697_b0225) 2015; 37 10.1016/j.imavis.2023.104697_b0080 10.1016/j.imavis.2023.104697_b0145 10.1016/j.imavis.2023.104697_b0025 10.1016/j.imavis.2023.104697_b0105 10.1016/j.imavis.2023.104697_b0260 10.1016/j.imavis.2023.104697_b0140 10.1016/j.imavis.2023.104697_b0060 10.1016/j.imavis.2023.104697_b0220 10.1016/j.imavis.2023.104697_b0100 10.1016/j.imavis.2023.104697_b0265 10.1016/j.imavis.2023.104697_b0020 10.1016/j.imavis.2023.104697_b0185 10.1016/j.imavis.2023.104697_b0065 10.1016/j.imavis.2023.104697_b0190 10.1016/j.imavis.2023.104697_b0070 Li (10.1016/j.imavis.2023.104697_b0290) 2020; 159 10.1016/j.imavis.2023.104697_b0015 10.1016/j.imavis.2023.104697_b0255 10.1016/j.imavis.2023.104697_b0135 10.1016/j.imavis.2023.104697_b0215 10.1016/j.imavis.2023.104697_b0095 10.1016/j.imavis.2023.104697_b0250 10.1016/j.imavis.2023.104697_b0170 Pang (10.1016/j.imavis.2023.104697_b0035) 2019; 57 10.1016/j.imavis.2023.104697_b0055 10.1016/j.imavis.2023.104697_b0130 10.1016/j.imavis.2023.104697_b0295 10.1016/j.imavis.2023.104697_b0010 10.1016/j.imavis.2023.104697_b0175 Rabbi (10.1016/j.imavis.2023.104697_b0050) 2020; 12 10.1016/j.imavis.2023.104697_b0180 Deng (10.1016/j.imavis.2023.104697_b0155) 2021; 24 |
| References_xml | – reference: D. Du, P. Zhu, L. Wen, X. Bian, H. Lin, Q. Hu, T. Peng, J. Zheng, X. Wang, Y. Zhang, et al., Visdrone-det2019: The vision meets drone object detection in image challenge results, in: Proceedings of the IEEE/CVF international conference on computer vision workshops, pp. 0–0. – reference: X. Yang, J. Yang, J. Yan, Y. Zhang, T. Zhang, Z. Guo, X. Sun, K.S. Fu, Towards more robust detection for small, cluttered and rotated objects, in: Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, vol. 27, pp. 8232–8241. – reference: R. Saini, N.K. Jha, B. Das, S. Mittal, C.K. Mohan, Ulsam: Ultra-lightweight subspace attention module for compact convolutional neural networks, in: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1627–1636. – volume: 19 start-page: 1 year: 2021 end-page: 5 ident: b0040 article-title: Sspnet: Scale selection pyramid network for tiny person detection from uav images publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 443 start-page: 292 year: 2021 end-page: 301 ident: b0030 article-title: A dual neural network for object detection in uav images publication-title: Neurocomputing – reference: T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection, in: Proceedings of the IEEE international conference on computer vision, pp. 2980–2988. – reference: J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788. – reference: G. Jocher, A. Chaurasia, J. Qiu, YOLOv8 by Ultralytics, – volume: 37 start-page: 1904 year: 2015 end-page: 1916 ident: b0225 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Z. Gevorgyan, Siou loss: More powerful learning for bounding box regression, arXiv preprint arXiv:2205.12740 (2022). – reference: , 2020. – volume: 12 start-page: 1432 year: 2020 ident: b0050 article-title: Small-object detection in remote sensing images with end-to-end edge-enhanced gan and object detector network publication-title: Remote Sens. – reference: P. Charbonnier, L. Blanc-Feraud, G. Aubert, M. Barlaud, Two deterministic half-quadratic regularization algorithms for computed imaging, in: Proceedings of 1st international conference on image processing, vol. 2, IEEE, pp. 168–172. – reference: A.S. Samyal, S. Hans, et al., Analysis and adaptation of yolov4 for object detection in aerial images, arXiv preprint arXiv:2203.10194 (2022). – reference: Y. Li, Y. Chen, N. Wang, Z. Zhang, Scale-aware trident networks for object detection, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6054–6063. – volume: 159 start-page: 296 year: 2020 end-page: 307 ident: b0290 article-title: Object detection in optical remote sensing images: A survey and a new benchmark publication-title: ISPRS J. Photogramm. Remote Sens. – reference: J. Redmon, A. Farhadi, Yolov3: An incremental improvement, arXiv preprint arXiv:1804.02767 (2018). – reference: , 2023. – reference: Y. Liu, H. Li, C. Hu, S. Luo, H. Shen, C.W. Chen, Catnet: context aggregation network for instance segmentation in remote sensing images, arXiv preprint arXiv:2111.11057 (2021). – reference: T. DeVries, G.W. Taylor, Improved regularization of convolutional neural networks with cutout, arXiv preprint arXiv:1708.04552 (2017). – volume: 34 start-page: 18381 year: 2021 end-page: 18394 ident: b0210 article-title: Learning high-precision bounding box for rotated object detection via kullback-leibler divergence publication-title: Adv. Neural Inf. Process. Syst. – reference: C. Guo, B. Fan, Q. Zhang, S. Xiang, C. Pan, Augfpn: Improving multi-scale feature learning for object detection, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12595–12604. – reference: M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, K. Cho, Augmentation for small object detection, arXiv preprint arXiv:1902.07296 (2019). – reference: Y. Bai, Y. Zhang, M. Ding, B. Ghanem, Sod-mtgan: Small object detection via multi-task generative adversarial network, in: Proceedings of the European Conference on Computer Vision (ECCV), pp. 206–221. – reference: H. Zhang, M. Cisse, Y.N. Dauphin, D. Lopez-Paz, mixup: Beyond empirical risk minimization, arXiv preprint arXiv:1710.09412 (2017). – reference: J. Redmon, A. Farhadi, Yolo9000: better, faster, stronger, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263–7271. – reference: C.-Y. Wang, H.-Y.M. Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, I.-H. Yeh, Cspnet: A new backbone that can enhance learning capability of cnn, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp. 390–391. – reference: R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587. – reference: X. Yang, J. Yan, Q. Ming, W. Wang, X. Zhang, Q. Tian, Rethinking rotated object detection with gaussian wasserstein distance loss, in: International Conference on Machine Learning, PMLR, pp. 11830–11841. – reference: W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A.C. Berg, Ssd: Single shot multibox detector, in: European conference on computer vision, Springer, pp. 21–37. – reference: C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, A.C. Berg, Dssd: Deconvolutional single shot detector, arXiv preprint arXiv:1701.06659 (2017). – reference: S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path aggregation network for instance segmentation, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8759–8768. – reference: R. Girshick, Fast r-cnn, in: Proceedings of the IEEE international conference on computer vision, pp. 1440–1448. – reference: F.C. Akyon, S.O. Altinuc, A. Temizel, Slicing aided hyper inference and fine-tuning for small object detection, arXiv preprint arXiv:2202.06934 (2022). – reference: Z. Li, F. Zhou, Fssd: feature fusion single shot multibox detector, arXiv preprint arXiv:1712.00960 (2017). – volume: 24 start-page: 1968 year: 2021 end-page: 1979 ident: b0155 article-title: Extended feature pyramid network for small object detection publication-title: IEEE Trans. Multimed. – reference: C. Yang, Z. Huang, N. Wang, Querydet: Cascaded sparse query for accelerating high-resolution small object detection, in: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp. 13668–13677. – reference: A. Bochkovskiy, C.-Y. Wang, H.-Y.M. Liao, Yolov4: Optimal speed and accuracy of object detection, arXiv preprint arXiv:2004.10934 (2020). – reference: J.-S. Lim, M. Astrid, H.-J. Yoon, S.-I. Lee, Small object detection using context and attention, in: 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), IEEE, pp. 181–186. – reference: T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117–2125. – reference: Y. Liu, Z. Ding, Y. Cao, M. Chang, Multi-scale feature fusion uav image object detection method based on dilated convolution and attention mechanism, in: 2020 The 8th International Conference on Information Technology: IoT and Smart City, pp. 125–132. – reference: T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C.L. Zitnick, Microsoft coco: Common objects in context, in: European conference on computer vision, Springer, pp. 740–755. – reference: C. Chen, Y. Zhang, Q. Lv, S. Wei, X. Wang, X. Sun, J. Dong, Rrnet: A hybrid detector for object detection in drone-captured images, in: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0. – reference: A. Ajmal, C. Hollitt, M. Frean, H. Al-Sahaf, A comparison of rgb and hsv colour spaces for visual attention models, in: 2018 International conference on image and vision computing New Zealand (IVCNZ), IEEE, pp. 1–6. – reference: B. Zoph, E.D. Cubuk, G. Ghiasi, T.-Y. Lin, J. Shlens, Q.V. Le, Learning data augmentation strategies for object detection, in: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVII 16, Springer, pp. 566–583. – reference: A. Van Etten, You only look twice: Rapid multi-scale object detection in satellite imagery, arXiv preprint arXiv:1805.09512 (2018). – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778. – reference: C.-Y. Wang, A. Bochkovskiy, H.-Y.M. Liao, Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, arXiv preprint arXiv:2207.02696 (2022). – volume: 28 year: 2015 ident: b0075 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 57 start-page: 5512 year: 2019 end-page: 5524 ident: b0035 article-title: R2-cnn: fast tiny object detection in large-scale remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – reference: B.M. Albaba, S. Ozer, Synet: An ensemble network for object detection in uav images, in: 2020 25th International Conference on Pattern Recognition (ICPR), IEEE, pp. 10227–10234. – reference: J. Li, X. Liang, Y. Wei, T. Xu, J. Feng, S. Yan, Perceptual generative adversarial networks for small object detection, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1222–1230. – reference: S. Yun, D. Han, S.J. Oh, S. Chun, J. Choe, Y. Yoo, Cutmix: Regularization strategy to train strong classifiers with localizable features, in: Proceedings of the IEEE/CVF international conference on computer vision, pp. 6023–6032. – reference: J. Yu, Y. Jiang, Z. Wang, Z. Cao, T. Huang, Unitbox: An advanced object detection network, in: Proceedings of the 24th ACM international conference on Multimedia, pp. 516–520. – reference: G. Jocher, YOLOv5 by Ultralytics, – volume: 42 start-page: 137 year: 2021 end-page: 151 ident: b0005 article-title: Survey of object detection in uav imagery based on deep learning publication-title: Acta Aeronaut. Astronaut. Sin. – reference: X. Zhang, E. Izquierdo, K. Chandramouli, Dense and small object detection in uav vision based on cascade network, in: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0. – reference: X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, C. Change Loy, Esrgan: Enhanced super-resolution generative adversarial networks, in: Proceedings of the European conference on computer vision (ECCV) workshops, pp. 0–0. – reference: Z. Ge, S. Liu, F. Wang, Z. Li, J. Sun, Yolox: Exceeding yolo series in 2021, arXiv preprint arXiv:2107.08430 (2021). – reference: F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions, arXiv preprint arXiv:1511.07122 (2015). – reference: J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, Y. Wei, Deformable convolutional networks, in: Proceedings of the IEEE international conference on computer vision, pp. 764–773. – ident: 10.1016/j.imavis.2023.104697_b0295 – ident: 10.1016/j.imavis.2023.104697_b0025 – ident: 10.1016/j.imavis.2023.104697_b0115 – ident: 10.1016/j.imavis.2023.104697_b0140 – volume: 12 start-page: 1432 year: 2020 ident: 10.1016/j.imavis.2023.104697_b0050 article-title: Small-object detection in remote sensing images with end-to-end edge-enhanced gan and object detector network publication-title: Remote Sens. doi: 10.3390/rs12091432 – ident: 10.1016/j.imavis.2023.104697_b0130 – ident: 10.1016/j.imavis.2023.104697_b0170 doi: 10.1007/978-3-030-58583-9_34 – ident: 10.1016/j.imavis.2023.104697_b0205 – ident: 10.1016/j.imavis.2023.104697_b0220 – volume: 34 start-page: 18381 year: 2021 ident: 10.1016/j.imavis.2023.104697_b0210 article-title: Learning high-precision bounding box for rotated object detection via kullback-leibler divergence publication-title: Adv. Neural Inf. Process. Syst. – volume: 28 year: 2015 ident: 10.1016/j.imavis.2023.104697_b0075 article-title: Faster r-cnn: Towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.imavis.2023.104697_b0150 – ident: 10.1016/j.imavis.2023.104697_b0045 – ident: 10.1016/j.imavis.2023.104697_b0080 doi: 10.1109/CVPR.2016.91 – ident: 10.1016/j.imavis.2023.104697_b0230 – ident: 10.1016/j.imavis.2023.104697_b0135 – ident: 10.1016/j.imavis.2023.104697_b0185 doi: 10.1109/ICAIIC51459.2021.9415217 – ident: 10.1016/j.imavis.2023.104697_b0095 – volume: 159 start-page: 296 year: 2020 ident: 10.1016/j.imavis.2023.104697_b0290 article-title: Object detection in optical remote sensing images: A survey and a new benchmark publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.11.023 – ident: 10.1016/j.imavis.2023.104697_b0240 – ident: 10.1016/j.imavis.2023.104697_b0065 doi: 10.1109/CVPR.2014.81 – ident: 10.1016/j.imavis.2023.104697_b0015 doi: 10.1145/3446999.3447023 – ident: 10.1016/j.imavis.2023.104697_b0010 doi: 10.1007/978-3-319-10602-1_48 – ident: 10.1016/j.imavis.2023.104697_b0275 – ident: 10.1016/j.imavis.2023.104697_b0145 – ident: 10.1016/j.imavis.2023.104697_b0285 – ident: 10.1016/j.imavis.2023.104697_b0060 doi: 10.1109/ICIP.1994.413553 – ident: 10.1016/j.imavis.2023.104697_b0120 – ident: 10.1016/j.imavis.2023.104697_b0245 – ident: 10.1016/j.imavis.2023.104697_b0270 – ident: 10.1016/j.imavis.2023.104697_b0265 doi: 10.1109/ICPR48806.2021.9412847 – ident: 10.1016/j.imavis.2023.104697_b0180 – ident: 10.1016/j.imavis.2023.104697_b0165 – volume: 37 start-page: 1904 year: 2015 ident: 10.1016/j.imavis.2023.104697_b0225 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – ident: 10.1016/j.imavis.2023.104697_b0125 doi: 10.1109/ICIP46576.2022.9897990 – volume: 42 start-page: 137 year: 2021 ident: 10.1016/j.imavis.2023.104697_b0005 article-title: Survey of object detection in uav imagery based on deep learning publication-title: Acta Aeronaut. Astronaut. Sin. – ident: 10.1016/j.imavis.2023.104697_b0260 doi: 10.1109/IVCNZ.2018.8634752 – ident: 10.1016/j.imavis.2023.104697_b0255 – ident: 10.1016/j.imavis.2023.104697_b0090 – ident: 10.1016/j.imavis.2023.104697_b0100 – ident: 10.1016/j.imavis.2023.104697_b0175 – ident: 10.1016/j.imavis.2023.104697_b0020 – volume: 57 start-page: 5512 year: 2019 ident: 10.1016/j.imavis.2023.104697_b0035 article-title: R2-cnn: fast tiny object detection in large-scale remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2899955 – ident: 10.1016/j.imavis.2023.104697_b0190 – ident: 10.1016/j.imavis.2023.104697_b0085 – ident: 10.1016/j.imavis.2023.104697_b0070 doi: 10.1109/ICCV.2015.169 – ident: 10.1016/j.imavis.2023.104697_b0215 doi: 10.1109/CVPR.2016.90 – ident: 10.1016/j.imavis.2023.104697_b0250 doi: 10.1145/2964284.2967274 – ident: 10.1016/j.imavis.2023.104697_b0200 – ident: 10.1016/j.imavis.2023.104697_b0055 – volume: 24 start-page: 1968 year: 2021 ident: 10.1016/j.imavis.2023.104697_b0155 article-title: Extended feature pyramid network for small object detection publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2021.3074273 – ident: 10.1016/j.imavis.2023.104697_b0280 doi: 10.1109/CVPR52729.2023.00721 – ident: 10.1016/j.imavis.2023.104697_b0160 doi: 10.5121/csit.2019.91713 – ident: 10.1016/j.imavis.2023.104697_b0110 doi: 10.1007/978-3-319-46448-0_2 – ident: 10.1016/j.imavis.2023.104697_b0195 – volume: 443 start-page: 292 year: 2021 ident: 10.1016/j.imavis.2023.104697_b0030 article-title: A dual neural network for object detection in uav images publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.016 – volume: 19 start-page: 1 year: 2021 ident: 10.1016/j.imavis.2023.104697_b0040 article-title: Sspnet: Scale selection pyramid network for tiny person detection from uav images publication-title: IEEE Geosci. Remote Sens. Lett. – ident: 10.1016/j.imavis.2023.104697_b0105 – ident: 10.1016/j.imavis.2023.104697_b0235 |
| SSID | ssj0007079 |
| Score | 2.6285555 |
| Snippet | •The slicing aided hyper inference with data augmentation pre-processing dataset facilitates the detection of small objects.•The introduction of shallow... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104697 |
| SubjectTerms | Object detection Small objects UAV aerial photography YOLOX |
| Title | Improved YOLOX-X based UAV aerial photography object detection algorithm |
| URI | https://dx.doi.org/10.1016/j.imavis.2023.104697 |
| Volume | 135 |
| WOSCitedRecordID | wos001011531900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0262-8856 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007079 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbKwoEe-oAi6Es-9BZlxTpxYh9XiGqpELQSoHCKEmfSDWKzq91Q8fM7jh1vWipaDr1ESeSX8n2aGU9mxoR8Qg0lIwbcL0se-KGEws9i3KWUI4bmfJyLw7ZY9dVpfHYmkkR-tUHsq_Y4gbiuxf29XPxXqPEdgq1TZ58AtxsUX-A9go5XhB2v_wS8cROgHXl9fnqe-ImnFVXhXY6vvKyd31tM542tVO3Nc-2I8QpowB4afvt9vqya6axvtp7MdGiP9rGbXPQ2Ev2u6dRe65A3QiOpHNsmYKi2bjSx8b9H03UCWtfxW9V3QLDABat2copFKFSFqQ_uhGrAe2JR_0g2YbgPJLZxHtwMq5muqjDUEwzXzX8tkP2b4nLhhF2k2k1qRkn1KKkZZYNssphLMSCb45Pj5ItT07o0oHHAmdV3eZVt8N_D1fzZbunZIhevyAu7iaBjA_5r8gzqHfLSbiioFderHfK8V21yl0w6ZlDLDNoygyIzqGEG7TGDGmZQxwzqmPGGXH4-vjia-PYgDV_hjrDxQUvuLEBNBnk-AgUq4Ao4oOkIIhOyULLQKdM5E2IEIUipuE5yG7GScabyYI8M6nkN-4TigwhVLoSEKMxYlBU8LCGOIu1MlCU7IEH3mVJlq8zrw05u08dAOiC-67UwVVb-0j7uEEitpWgswBRp9WjPt0-c6R3ZXnP-PRk0yzv4QLbUj6ZaLT9aTv0Ew1-Jnw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+YOLOX-X+based+UAV+aerial+photography+object+detection+algorithm&rft.jtitle=Image+and+vision+computing&rft.au=Wang%2C+Xin&rft.au=He%2C+Ning&rft.au=Hong%2C+Chen&rft.au=Wang%2C+Qi&rft.date=2023-07-01&rft.issn=0262-8856&rft.volume=135&rft.spage=104697&rft_id=info:doi/10.1016%2Fj.imavis.2023.104697&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_imavis_2023_104697 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon |