Orderly charging strategy of electric vehicle based on improved PSO algorithm

With the increasing penetration of electric vehicles (EVs), the harmful impact caused by EV's disorderly charging becomes larger. Aiming for mitigating the impact of disorderly charging on the grid and improving the user's satisfaction, this paper firstly performs the Monte Carlo simulatio...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) Vol. 271; p. 127088
Main Authors: Du, Wenyi, Ma, Juan, Yin, Wanjun
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.05.2023
Subjects:
ISSN:0360-5442
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the increasing penetration of electric vehicles (EVs), the harmful impact caused by EV's disorderly charging becomes larger. Aiming for mitigating the impact of disorderly charging on the grid and improving the user's satisfaction, this paper firstly performs the Monte Carlo simulation (MCS) to obtain the distribution information of EVs' disorderly charging. Then an improved particle swarm optimization (PSO) algorithm is presented to model the orderly charging strategy. In order to maintain the diversity of the population better, a rotation matrix is utilized to yaw particle's search direction slightly in the improved PSO. And by adjusting the inertia weight index and learning factor, the problems of poor local optimization ability and premature convergence of the original PSO is alleviated. Finally, the proposed approach is verified by a practical engineering case. The outcome demonstrates that the proposed orderly charging strategy can significantly lower the charging cost and peak-valley difference. •The factors affecting the charging of electric vehicles are analyzed.•The load characteristics of electric vehicle disorderly charging are simulated.•The improved PSO algorithm is used to realize the orderly charging of electric vehicles.
AbstractList With the increasing penetration of electric vehicles (EVs), the harmful impact caused by EV's disorderly charging becomes larger. Aiming for mitigating the impact of disorderly charging on the grid and improving the user's satisfaction, this paper firstly performs the Monte Carlo simulation (MCS) to obtain the distribution information of EVs' disorderly charging. Then an improved particle swarm optimization (PSO) algorithm is presented to model the orderly charging strategy. In order to maintain the diversity of the population better, a rotation matrix is utilized to yaw particle's search direction slightly in the improved PSO. And by adjusting the inertia weight index and learning factor, the problems of poor local optimization ability and premature convergence of the original PSO is alleviated. Finally, the proposed approach is verified by a practical engineering case. The outcome demonstrates that the proposed orderly charging strategy can significantly lower the charging cost and peak-valley difference. •The factors affecting the charging of electric vehicles are analyzed.•The load characteristics of electric vehicle disorderly charging are simulated.•The improved PSO algorithm is used to realize the orderly charging of electric vehicles.
ArticleNumber 127088
Author Yin, Wanjun
Ma, Juan
Du, Wenyi
Author_xml – sequence: 1
  givenname: Wenyi
  surname: Du
  fullname: Du, Wenyi
  organization: Research Center of Applied Mechanics, School of Electro-Mechanical Engineering, Xidian University, Xi’an, 710071, PR China
– sequence: 2
  givenname: Juan
  orcidid: 0000-0001-8131-1721
  surname: Ma
  fullname: Ma, Juan
  email: jma@xidian.edu.cn
  organization: Research Center of Applied Mechanics, School of Electro-Mechanical Engineering, Xidian University, Xi’an, 710071, PR China
– sequence: 3
  givenname: Wanjun
  surname: Yin
  fullname: Yin, Wanjun
  organization: School of Electronics and Automation, Guilin University of Aerospace Technology, Guilin, 541004, PR China
BookMark eNqFkMtqwzAQRbVIoUnaP-hCP2BXsizJ7qJQQl-QkkLbtVCksaPgSEEyAf99HdxVF-1qBoZzuXMWaOaDB4RuKMkpoeJ2n4OH2A55QQqW00KSqpqhOWGCZLwsi0u0SGlPCOFVXc_R2yZaiN2AzU7H1vkWpz7qHtoBhwZDB6aPzuAT7JzpAG91AouDx-5wjOE07u8fG6y7NkTX7w5X6KLRXYLrn7lEX0-Pn6uXbL15fl09rDPDiOgzWzdVwUjNy8JYIWvDSxBWSi301hZScgZj38rKqqHjzUgGglNmamYqrqlgS3Q35ZoYUorQKON63bvgx_KuU5Soswy1V5MMdZahJhkjXP6Cj9EddBz-w-4nDMbHTg6iSsaBN2BdHC0pG9zfAd9Y_n-f
CitedBy_id crossref_primary_10_1177_14727978251322682
crossref_primary_10_3390_rs15153788
crossref_primary_10_1038_s41598_023_46660_5
crossref_primary_10_1016_j_est_2025_118420
crossref_primary_10_1049_cmu2_70074
crossref_primary_10_1109_TITS_2024_3365581
crossref_primary_10_1038_s41598_023_45543_z
crossref_primary_10_1016_j_apenergy_2025_125456
crossref_primary_10_1016_j_apenergy_2024_124800
crossref_primary_10_1016_j_energy_2025_138467
crossref_primary_10_1007_s42835_024_02057_6
crossref_primary_10_1016_j_ijepes_2023_109761
crossref_primary_10_3390_a17030110
crossref_primary_10_1016_j_scs_2024_105308
crossref_primary_10_1155_2024_9949554
crossref_primary_10_1016_j_ecmx_2025_101088
crossref_primary_10_3390_en17071760
crossref_primary_10_1016_j_buildenv_2023_110815
crossref_primary_10_1016_j_jii_2025_100919
crossref_primary_10_1016_j_energy_2025_135914
crossref_primary_10_1080_21642583_2023_2249021
crossref_primary_10_1016_j_rser_2025_116043
crossref_primary_10_1016_j_ijepes_2025_110657
crossref_primary_10_1016_j_epsr_2025_111838
crossref_primary_10_3390_electronics14112251
crossref_primary_10_1016_j_energy_2023_129005
crossref_primary_10_1016_j_apenergy_2025_126366
crossref_primary_10_1016_j_procs_2025_03_060
crossref_primary_10_1016_j_energy_2024_130639
crossref_primary_10_1109_ACCESS_2024_3371889
crossref_primary_10_1007_s10586_024_04348_z
crossref_primary_10_1038_s41598_024_56264_2
crossref_primary_10_1016_j_energy_2024_131807
crossref_primary_10_1016_j_compbiomed_2023_107545
crossref_primary_10_1049_enc2_70018
crossref_primary_10_1016_j_etran_2024_100367
crossref_primary_10_1177_02783649251347661
crossref_primary_10_3390_pr12050918
crossref_primary_10_1016_j_est_2024_113021
crossref_primary_10_1016_j_energy_2023_129913
crossref_primary_10_1016_j_jobe_2024_110028
crossref_primary_10_1016_j_rser_2025_115449
crossref_primary_10_3390_math13152440
crossref_primary_10_3390_wevj14090236
crossref_primary_10_3389_fmars_2025_1629563
crossref_primary_10_3390_en16145302
crossref_primary_10_1016_j_egyr_2024_06_042
crossref_primary_10_3390_app142311389
crossref_primary_10_1016_j_asoc_2025_112691
crossref_primary_10_3390_electronics12234876
crossref_primary_10_3389_fenrg_2024_1428624
crossref_primary_10_1016_j_geits_2025_100283
crossref_primary_10_1016_j_segan_2025_101900
crossref_primary_10_1016_j_est_2024_113872
crossref_primary_10_1016_j_heliyon_2024_e31525
crossref_primary_10_3390_electronics13204041
Cites_doi 10.1016/j.energy.2019.116806
10.1016/j.energy.2021.122261
10.1007/BF01743302
10.1007/s10107-011-0462-2
10.1016/j.est.2021.102966
10.1016/j.egyr.2022.03.131
10.1016/j.renene.2020.03.169
10.1007/s12652-019-01233-1
10.1016/j.energy.2021.121118
10.1016/j.energy.2014.05.070
10.1016/j.egyr.2022.10.068
10.3390/en15051869
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.energy.2023.127088
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2023_127088
S0360544223004826
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
~HD
ID FETCH-LOGICAL-c306t-d9f82309542cd679c54e6d77a6abd27753e0368d78f1c54c73e6513c93c85a163
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000965847400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Tue Nov 18 22:00:31 EST 2025
Sat Nov 29 07:19:12 EST 2025
Sat Feb 17 16:11:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords EV
Charging strategy
EVs
SOC
GA
TOU
MCS
Particle swarm optimization
PSO
NHTS
Monte Carlo simulation
SA
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-d9f82309542cd679c54e6d77a6abd27753e0368d78f1c54c73e6513c93c85a163
ORCID 0000-0001-8131-1721
ParticipantIDs crossref_citationtrail_10_1016_j_energy_2023_127088
crossref_primary_10_1016_j_energy_2023_127088
elsevier_sciencedirect_doi_10_1016_j_energy_2023_127088
PublicationCentury 2000
PublicationDate 2023-05-15
PublicationDateYYYYMMDD 2023-05-15
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xiang, Li, Lin, Li, Cai, Du (bib5) 2020
Yin, Ming, Wen (bib15) 2021; 232
Li, Liu (bib18) 2016
(bib4) 2022; 8
Arora, Huang, Hsieh (bib10) 1994; 8
Yin, Mavaluru, Ahmed, Abbas, Darvishan (bib7) 2020; 11
bib14
Tao, Huang, Chen, Yang (bib2) 2020; 193
bib11
Askarzadeh (bib20) 2014; 72
bib9
Yang, Long, Pan, Wu, Zhan, Lin (bib6) 2019
Bao, Sahinidis, Tawarmalani (bib8) 2011; 129
bib19
Zhang, Sun, Li, Li (bib3) 2012
Yin, Ming (bib17) 2021; 42
Hao, Dong, Liang, Liao, Wang, Shi (bib12) 2020; 155
Goh, Zong, Zhang, Dai, Lim, Kurniawan (bib1) 2022; 15
Mei, Li, Wang, Wang, Negnevitsky (bib13) 2022; 8
Yi, Cheng, Peng (bib16) 2022; 239
Askarzadeh (10.1016/j.energy.2023.127088_bib20) 2014; 72
Yang (10.1016/j.energy.2023.127088_bib6) 2019
(10.1016/j.energy.2023.127088_bib4) 2022; 8
Xiang (10.1016/j.energy.2023.127088_bib5)
Li (10.1016/j.energy.2023.127088_bib18) 2016
Yin (10.1016/j.energy.2023.127088_bib7) 2020; 11
Arora (10.1016/j.energy.2023.127088_bib10) 1994; 8
Tao (10.1016/j.energy.2023.127088_bib2) 2020; 193
Yi (10.1016/j.energy.2023.127088_bib16) 2022; 239
Yin (10.1016/j.energy.2023.127088_bib17) 2021; 42
Mei (10.1016/j.energy.2023.127088_bib13) 2022; 8
Goh (10.1016/j.energy.2023.127088_bib1) 2022; 15
Zhang (10.1016/j.energy.2023.127088_bib3) 2012
Bao (10.1016/j.energy.2023.127088_bib8) 2011; 129
Yin (10.1016/j.energy.2023.127088_bib15) 2021; 232
Hao (10.1016/j.energy.2023.127088_bib12) 2020; 155
References_xml – volume: 11
  start-page: 2071
  year: 2020
  end-page: 2103
  ident: bib7
  article-title: Application of new multi-objective optimization algorithm for EV scheduling in smart grid through the uncertainties
  publication-title: J Ambient Intell Hum Comput
– start-page: 1
  year: 2012
  end-page: 5
  ident: bib3
  article-title: A modeling method for the power demand of EVs based on Monte Carlo simulation
  publication-title: 2012 Asia-Pacific Power Energy Eng Conference
– volume: 42
  year: 2021
  ident: bib17
  article-title: Electric vehicle charging and discharging scheduling strategy based on local search and competitive learning particle swarm optimization algorithm
  publication-title: J Energy Storage
– volume: 232
  year: 2021
  ident: bib15
  article-title: Scheduling strategy of electric vehicle charging considering different requirements of grid and users
  publication-title: Energy
– volume: 129
  start-page: 129
  year: 2011
  end-page: 157
  ident: bib8
  article-title: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons
  publication-title: Math Program
– volume: 155
  start-page: 1191
  year: 2020
  end-page: 1210
  ident: bib12
  article-title: Power forecasting-based coordination dispatch of PV power generation and EVs charging in microgrid
  publication-title: Renew Energy
– ident: bib19
  article-title: A performance study on synchronicity and neighborhood size in particle swarm optimization | SpringerLink n.d
– volume: 8
  start-page: 124
  year: 2022
  end-page: 134
  ident: bib4
  article-title: Electric vehicle charging load prediction considering the orderly charging
  publication-title: Energy Rep
– ident: bib14
  article-title: Multi-beneficial orderly charging subsidy dispatching strategy for EVs in residential areas IEEE conference publication IEEE xplore n.d
– volume: 72
  start-page: 484
  year: 2014
  end-page: 491
  ident: bib20
  article-title: Comparison of particle swarm optimization and other metaheuristics on electricity demand estimation: a case study of Iran
  publication-title: Energy
– ident: bib9
  article-title: A review of interactive methods for multiobjective integer and mixed-integer programming - ScienceDirect n.d
– volume: 8
  start-page: 69
  year: 1994
  end-page: 85
  ident: bib10
  article-title: Methods for optimization of nonlinear problems with discrete variables: a review
  publication-title: Struct Optim
– ident: bib11
  article-title: Study on orderly charging management of EVs based on demand response IEEE Conference Publication IEEE Xplore n.d
– start-page: 6823
  year: 2016
  end-page: 6827
  ident: bib18
  article-title: Study on closed loop charging strategy of battery based on Maas's law. 2016 Chinese Control and Decision Conference
– volume: 193
  year: 2020
  ident: bib2
  article-title: Orderly charging strategy of battery electric vehicle driven by real-world driving data
  publication-title: Energy
– start-page: 1
  year: 2019
  end-page: 5
  ident: bib6
  article-title: Electric vehicle charging load forecasting model considering road network-power grid information
  publication-title: 2019 International Conference on Technologies and Policies in Electric Power & Energy
– volume: 8
  start-page: 4512
  year: 2022
  end-page: 4524
  ident: bib13
  article-title: Multi-objective optimal scheduling of microgrid with EVs
  publication-title: Energy Rep
– volume: 239
  year: 2022
  ident: bib16
  article-title: Two-stage optimal allocation of charging stations based on spatiotemporal complementarity and demand response: a framework based on MCS and DBPSO
  publication-title: Energy
– year: 2020
  ident: bib5
  article-title: An electric vehicle charging load forecast model based on probability distribution. 2020 IEEE 4th conference on energy internet and energy system integration (EI2)
– volume: 15
  year: 2022
  ident: bib1
  article-title: Orderly charging strategy based on optimal time of use price demand response of EVs in distribution network
  publication-title: Energies
– volume: 193
  year: 2020
  ident: 10.1016/j.energy.2023.127088_bib2
  article-title: Orderly charging strategy of battery electric vehicle driven by real-world driving data
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116806
– volume: 239
  year: 2022
  ident: 10.1016/j.energy.2023.127088_bib16
  article-title: Two-stage optimal allocation of charging stations based on spatiotemporal complementarity and demand response: a framework based on MCS and DBPSO
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122261
– start-page: 1
  year: 2019
  ident: 10.1016/j.energy.2023.127088_bib6
  article-title: Electric vehicle charging load forecasting model considering road network-power grid information
  publication-title: 2019 International Conference on Technologies and Policies in Electric Power & Energy
– volume: 8
  start-page: 69
  year: 1994
  ident: 10.1016/j.energy.2023.127088_bib10
  article-title: Methods for optimization of nonlinear problems with discrete variables: a review
  publication-title: Struct Optim
  doi: 10.1007/BF01743302
– volume: 129
  start-page: 129
  year: 2011
  ident: 10.1016/j.energy.2023.127088_bib8
  article-title: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons
  publication-title: Math Program
  doi: 10.1007/s10107-011-0462-2
– volume: 42
  year: 2021
  ident: 10.1016/j.energy.2023.127088_bib17
  article-title: Electric vehicle charging and discharging scheduling strategy based on local search and competitive learning particle swarm optimization algorithm
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102966
– ident: 10.1016/j.energy.2023.127088_bib5
– start-page: 1
  year: 2012
  ident: 10.1016/j.energy.2023.127088_bib3
  article-title: A modeling method for the power demand of EVs based on Monte Carlo simulation
  publication-title: 2012 Asia-Pacific Power Energy Eng Conference
– volume: 8
  start-page: 4512
  year: 2022
  ident: 10.1016/j.energy.2023.127088_bib13
  article-title: Multi-objective optimal scheduling of microgrid with EVs
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2022.03.131
– volume: 155
  start-page: 1191
  year: 2020
  ident: 10.1016/j.energy.2023.127088_bib12
  article-title: Power forecasting-based coordination dispatch of PV power generation and EVs charging in microgrid
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.03.169
– volume: 11
  start-page: 2071
  year: 2020
  ident: 10.1016/j.energy.2023.127088_bib7
  article-title: Application of new multi-objective optimization algorithm for EV scheduling in smart grid through the uncertainties
  publication-title: J Ambient Intell Hum Comput
  doi: 10.1007/s12652-019-01233-1
– volume: 232
  year: 2021
  ident: 10.1016/j.energy.2023.127088_bib15
  article-title: Scheduling strategy of electric vehicle charging considering different requirements of grid and users
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121118
– volume: 72
  start-page: 484
  year: 2014
  ident: 10.1016/j.energy.2023.127088_bib20
  article-title: Comparison of particle swarm optimization and other metaheuristics on electricity demand estimation: a case study of Iran
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.070
– volume: 8
  start-page: 124
  year: 2022
  ident: 10.1016/j.energy.2023.127088_bib4
  article-title: Electric vehicle charging load prediction considering the orderly charging
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2022.10.068
– volume: 15
  year: 2022
  ident: 10.1016/j.energy.2023.127088_bib1
  article-title: Orderly charging strategy based on optimal time of use price demand response of EVs in distribution network
  publication-title: Energies
  doi: 10.3390/en15051869
– start-page: 6823
  year: 2016
  ident: 10.1016/j.energy.2023.127088_bib18
SSID ssj0005899
Score 2.6393254
Snippet With the increasing penetration of electric vehicles (EVs), the harmful impact caused by EV's disorderly charging becomes larger. Aiming for mitigating the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 127088
SubjectTerms Charging strategy
Monte Carlo simulation
Particle swarm optimization
Title Orderly charging strategy of electric vehicle based on improved PSO algorithm
URI https://dx.doi.org/10.1016/j.energy.2023.127088
Volume 271
WOSCitedRecordID wos000965847400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgiwQXBIWK8pIP3FZeJY4T28cKFgGCthIFllPkOAnNavFW-6i2_57xI0mXokIPXKIosSdW5oszHs83g9AryZOq0DwishCMsIKmpIhoTVQsS5rVjCnHhfn6kR8eislEHof6nUtXToAbIzYbefZfVQ3XQNmWOnsDdXdC4QKcg9LhCGqH4z8p_sgm05xdDF0OJO8tcOkg3Fa6r3rT6OF5dWo7Du1frLQ7Bo3zLsD58eejoZr9mC-a1enPLce9pwna_KQbHxLfORHerF2sXmUumt7F7UkfPfq--3QF35SZrs1lbwN1sX2eb9mxrCKSMrY1g1JfRSXMgXYv25fquzI9e0_BdFS5AY_sA0Z98-1s2L_9pbrYwTYsbZp7KbmVknspt9EO5akUA7Rz8H48-dAH-whXSbQbfUuidJF-V0fzZyPlkuFx8gDdDysGfOA1_RDdqswuutsSype7aG_ckxWhYZitl4_QpwAF3EIBt1DA8xq3UMABCthBAc8NbqGAAQq4g8Jj9OXt-OT1OxLKZxAN68AVKWVtd1FlyqguMy51yqqs5Fxlqigph3VqBe9DlFzUMdzT8NVmaZxomWiRKrDT99DAzE31BGEalYlSNZiTTNgEfAIEFkWkoiRJYx1n-yhp31euQ255W-Jkll-nrX1Eul5nPrfKX9rzVhV5sA-93ZcDvq7t-fSGT3qG7vXgf44Gq8W6eoHu6PNVs1y8DOD6BVZ2hg0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orderly+charging+strategy+of+electric+vehicle+based+on+improved+PSO+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Du%2C+Wenyi&rft.au=Ma%2C+Juan&rft.au=Yin%2C+Wanjun&rft.date=2023-05-15&rft.issn=0360-5442&rft.volume=271&rft.spage=127088&rft_id=info:doi/10.1016%2Fj.energy.2023.127088&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2023_127088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon