Orderly charging strategy of electric vehicle based on improved PSO algorithm
With the increasing penetration of electric vehicles (EVs), the harmful impact caused by EV's disorderly charging becomes larger. Aiming for mitigating the impact of disorderly charging on the grid and improving the user's satisfaction, this paper firstly performs the Monte Carlo simulatio...
Saved in:
| Published in: | Energy (Oxford) Vol. 271; p. 127088 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.05.2023
|
| Subjects: | |
| ISSN: | 0360-5442 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | With the increasing penetration of electric vehicles (EVs), the harmful impact caused by EV's disorderly charging becomes larger. Aiming for mitigating the impact of disorderly charging on the grid and improving the user's satisfaction, this paper firstly performs the Monte Carlo simulation (MCS) to obtain the distribution information of EVs' disorderly charging. Then an improved particle swarm optimization (PSO) algorithm is presented to model the orderly charging strategy. In order to maintain the diversity of the population better, a rotation matrix is utilized to yaw particle's search direction slightly in the improved PSO. And by adjusting the inertia weight index and learning factor, the problems of poor local optimization ability and premature convergence of the original PSO is alleviated. Finally, the proposed approach is verified by a practical engineering case. The outcome demonstrates that the proposed orderly charging strategy can significantly lower the charging cost and peak-valley difference.
•The factors affecting the charging of electric vehicles are analyzed.•The load characteristics of electric vehicle disorderly charging are simulated.•The improved PSO algorithm is used to realize the orderly charging of electric vehicles. |
|---|---|
| AbstractList | With the increasing penetration of electric vehicles (EVs), the harmful impact caused by EV's disorderly charging becomes larger. Aiming for mitigating the impact of disorderly charging on the grid and improving the user's satisfaction, this paper firstly performs the Monte Carlo simulation (MCS) to obtain the distribution information of EVs' disorderly charging. Then an improved particle swarm optimization (PSO) algorithm is presented to model the orderly charging strategy. In order to maintain the diversity of the population better, a rotation matrix is utilized to yaw particle's search direction slightly in the improved PSO. And by adjusting the inertia weight index and learning factor, the problems of poor local optimization ability and premature convergence of the original PSO is alleviated. Finally, the proposed approach is verified by a practical engineering case. The outcome demonstrates that the proposed orderly charging strategy can significantly lower the charging cost and peak-valley difference.
•The factors affecting the charging of electric vehicles are analyzed.•The load characteristics of electric vehicle disorderly charging are simulated.•The improved PSO algorithm is used to realize the orderly charging of electric vehicles. |
| ArticleNumber | 127088 |
| Author | Yin, Wanjun Ma, Juan Du, Wenyi |
| Author_xml | – sequence: 1 givenname: Wenyi surname: Du fullname: Du, Wenyi organization: Research Center of Applied Mechanics, School of Electro-Mechanical Engineering, Xidian University, Xi’an, 710071, PR China – sequence: 2 givenname: Juan orcidid: 0000-0001-8131-1721 surname: Ma fullname: Ma, Juan email: jma@xidian.edu.cn organization: Research Center of Applied Mechanics, School of Electro-Mechanical Engineering, Xidian University, Xi’an, 710071, PR China – sequence: 3 givenname: Wanjun surname: Yin fullname: Yin, Wanjun organization: School of Electronics and Automation, Guilin University of Aerospace Technology, Guilin, 541004, PR China |
| BookMark | eNqFkMtqwzAQRbVIoUnaP-hCP2BXsizJ7qJQQl-QkkLbtVCksaPgSEEyAf99HdxVF-1qBoZzuXMWaOaDB4RuKMkpoeJ2n4OH2A55QQqW00KSqpqhOWGCZLwsi0u0SGlPCOFVXc_R2yZaiN2AzU7H1vkWpz7qHtoBhwZDB6aPzuAT7JzpAG91AouDx-5wjOE07u8fG6y7NkTX7w5X6KLRXYLrn7lEX0-Pn6uXbL15fl09rDPDiOgzWzdVwUjNy8JYIWvDSxBWSi301hZScgZj38rKqqHjzUgGglNmamYqrqlgS3Q35ZoYUorQKON63bvgx_KuU5Soswy1V5MMdZahJhkjXP6Cj9EddBz-w-4nDMbHTg6iSsaBN2BdHC0pG9zfAd9Y_n-f |
| CitedBy_id | crossref_primary_10_1177_14727978251322682 crossref_primary_10_3390_rs15153788 crossref_primary_10_1038_s41598_023_46660_5 crossref_primary_10_1016_j_est_2025_118420 crossref_primary_10_1049_cmu2_70074 crossref_primary_10_1109_TITS_2024_3365581 crossref_primary_10_1038_s41598_023_45543_z crossref_primary_10_1016_j_apenergy_2025_125456 crossref_primary_10_1016_j_apenergy_2024_124800 crossref_primary_10_1016_j_energy_2025_138467 crossref_primary_10_1007_s42835_024_02057_6 crossref_primary_10_1016_j_ijepes_2023_109761 crossref_primary_10_3390_a17030110 crossref_primary_10_1016_j_scs_2024_105308 crossref_primary_10_1155_2024_9949554 crossref_primary_10_1016_j_ecmx_2025_101088 crossref_primary_10_3390_en17071760 crossref_primary_10_1016_j_buildenv_2023_110815 crossref_primary_10_1016_j_jii_2025_100919 crossref_primary_10_1016_j_energy_2025_135914 crossref_primary_10_1080_21642583_2023_2249021 crossref_primary_10_1016_j_rser_2025_116043 crossref_primary_10_1016_j_ijepes_2025_110657 crossref_primary_10_1016_j_epsr_2025_111838 crossref_primary_10_3390_electronics14112251 crossref_primary_10_1016_j_energy_2023_129005 crossref_primary_10_1016_j_apenergy_2025_126366 crossref_primary_10_1016_j_procs_2025_03_060 crossref_primary_10_1016_j_energy_2024_130639 crossref_primary_10_1109_ACCESS_2024_3371889 crossref_primary_10_1007_s10586_024_04348_z crossref_primary_10_1038_s41598_024_56264_2 crossref_primary_10_1016_j_energy_2024_131807 crossref_primary_10_1016_j_compbiomed_2023_107545 crossref_primary_10_1049_enc2_70018 crossref_primary_10_1016_j_etran_2024_100367 crossref_primary_10_1177_02783649251347661 crossref_primary_10_3390_pr12050918 crossref_primary_10_1016_j_est_2024_113021 crossref_primary_10_1016_j_energy_2023_129913 crossref_primary_10_1016_j_jobe_2024_110028 crossref_primary_10_1016_j_rser_2025_115449 crossref_primary_10_3390_math13152440 crossref_primary_10_3390_wevj14090236 crossref_primary_10_3389_fmars_2025_1629563 crossref_primary_10_3390_en16145302 crossref_primary_10_1016_j_egyr_2024_06_042 crossref_primary_10_3390_app142311389 crossref_primary_10_1016_j_asoc_2025_112691 crossref_primary_10_3390_electronics12234876 crossref_primary_10_3389_fenrg_2024_1428624 crossref_primary_10_1016_j_geits_2025_100283 crossref_primary_10_1016_j_segan_2025_101900 crossref_primary_10_1016_j_est_2024_113872 crossref_primary_10_1016_j_heliyon_2024_e31525 crossref_primary_10_3390_electronics13204041 |
| Cites_doi | 10.1016/j.energy.2019.116806 10.1016/j.energy.2021.122261 10.1007/BF01743302 10.1007/s10107-011-0462-2 10.1016/j.est.2021.102966 10.1016/j.egyr.2022.03.131 10.1016/j.renene.2020.03.169 10.1007/s12652-019-01233-1 10.1016/j.energy.2021.121118 10.1016/j.energy.2014.05.070 10.1016/j.egyr.2022.10.068 10.3390/en15051869 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.energy.2023.127088 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2023_127088 S0360544223004826 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ ~HD |
| ID | FETCH-LOGICAL-c306t-d9f82309542cd679c54e6d77a6abd27753e0368d78f1c54c73e6513c93c85a163 |
| ISICitedReferencesCount | 70 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000965847400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Tue Nov 18 22:00:31 EST 2025 Sat Nov 29 07:19:12 EST 2025 Sat Feb 17 16:11:29 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | EV Charging strategy EVs SOC GA TOU MCS Particle swarm optimization PSO NHTS Monte Carlo simulation SA |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-d9f82309542cd679c54e6d77a6abd27753e0368d78f1c54c73e6513c93c85a163 |
| ORCID | 0000-0001-8131-1721 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_energy_2023_127088 crossref_primary_10_1016_j_energy_2023_127088 elsevier_sciencedirect_doi_10_1016_j_energy_2023_127088 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-15 |
| PublicationDateYYYYMMDD | 2023-05-15 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Xiang, Li, Lin, Li, Cai, Du (bib5) 2020 Yin, Ming, Wen (bib15) 2021; 232 Li, Liu (bib18) 2016 (bib4) 2022; 8 Arora, Huang, Hsieh (bib10) 1994; 8 Yin, Mavaluru, Ahmed, Abbas, Darvishan (bib7) 2020; 11 bib14 Tao, Huang, Chen, Yang (bib2) 2020; 193 bib11 Askarzadeh (bib20) 2014; 72 bib9 Yang, Long, Pan, Wu, Zhan, Lin (bib6) 2019 Bao, Sahinidis, Tawarmalani (bib8) 2011; 129 bib19 Zhang, Sun, Li, Li (bib3) 2012 Yin, Ming (bib17) 2021; 42 Hao, Dong, Liang, Liao, Wang, Shi (bib12) 2020; 155 Goh, Zong, Zhang, Dai, Lim, Kurniawan (bib1) 2022; 15 Mei, Li, Wang, Wang, Negnevitsky (bib13) 2022; 8 Yi, Cheng, Peng (bib16) 2022; 239 Askarzadeh (10.1016/j.energy.2023.127088_bib20) 2014; 72 Yang (10.1016/j.energy.2023.127088_bib6) 2019 (10.1016/j.energy.2023.127088_bib4) 2022; 8 Xiang (10.1016/j.energy.2023.127088_bib5) Li (10.1016/j.energy.2023.127088_bib18) 2016 Yin (10.1016/j.energy.2023.127088_bib7) 2020; 11 Arora (10.1016/j.energy.2023.127088_bib10) 1994; 8 Tao (10.1016/j.energy.2023.127088_bib2) 2020; 193 Yi (10.1016/j.energy.2023.127088_bib16) 2022; 239 Yin (10.1016/j.energy.2023.127088_bib17) 2021; 42 Mei (10.1016/j.energy.2023.127088_bib13) 2022; 8 Goh (10.1016/j.energy.2023.127088_bib1) 2022; 15 Zhang (10.1016/j.energy.2023.127088_bib3) 2012 Bao (10.1016/j.energy.2023.127088_bib8) 2011; 129 Yin (10.1016/j.energy.2023.127088_bib15) 2021; 232 Hao (10.1016/j.energy.2023.127088_bib12) 2020; 155 |
| References_xml | – volume: 11 start-page: 2071 year: 2020 end-page: 2103 ident: bib7 article-title: Application of new multi-objective optimization algorithm for EV scheduling in smart grid through the uncertainties publication-title: J Ambient Intell Hum Comput – start-page: 1 year: 2012 end-page: 5 ident: bib3 article-title: A modeling method for the power demand of EVs based on Monte Carlo simulation publication-title: 2012 Asia-Pacific Power Energy Eng Conference – volume: 42 year: 2021 ident: bib17 article-title: Electric vehicle charging and discharging scheduling strategy based on local search and competitive learning particle swarm optimization algorithm publication-title: J Energy Storage – volume: 232 year: 2021 ident: bib15 article-title: Scheduling strategy of electric vehicle charging considering different requirements of grid and users publication-title: Energy – volume: 129 start-page: 129 year: 2011 end-page: 157 ident: bib8 article-title: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons publication-title: Math Program – volume: 155 start-page: 1191 year: 2020 end-page: 1210 ident: bib12 article-title: Power forecasting-based coordination dispatch of PV power generation and EVs charging in microgrid publication-title: Renew Energy – ident: bib19 article-title: A performance study on synchronicity and neighborhood size in particle swarm optimization | SpringerLink n.d – volume: 8 start-page: 124 year: 2022 end-page: 134 ident: bib4 article-title: Electric vehicle charging load prediction considering the orderly charging publication-title: Energy Rep – ident: bib14 article-title: Multi-beneficial orderly charging subsidy dispatching strategy for EVs in residential areas IEEE conference publication IEEE xplore n.d – volume: 72 start-page: 484 year: 2014 end-page: 491 ident: bib20 article-title: Comparison of particle swarm optimization and other metaheuristics on electricity demand estimation: a case study of Iran publication-title: Energy – ident: bib9 article-title: A review of interactive methods for multiobjective integer and mixed-integer programming - ScienceDirect n.d – volume: 8 start-page: 69 year: 1994 end-page: 85 ident: bib10 article-title: Methods for optimization of nonlinear problems with discrete variables: a review publication-title: Struct Optim – ident: bib11 article-title: Study on orderly charging management of EVs based on demand response IEEE Conference Publication IEEE Xplore n.d – start-page: 6823 year: 2016 end-page: 6827 ident: bib18 article-title: Study on closed loop charging strategy of battery based on Maas's law. 2016 Chinese Control and Decision Conference – volume: 193 year: 2020 ident: bib2 article-title: Orderly charging strategy of battery electric vehicle driven by real-world driving data publication-title: Energy – start-page: 1 year: 2019 end-page: 5 ident: bib6 article-title: Electric vehicle charging load forecasting model considering road network-power grid information publication-title: 2019 International Conference on Technologies and Policies in Electric Power & Energy – volume: 8 start-page: 4512 year: 2022 end-page: 4524 ident: bib13 article-title: Multi-objective optimal scheduling of microgrid with EVs publication-title: Energy Rep – volume: 239 year: 2022 ident: bib16 article-title: Two-stage optimal allocation of charging stations based on spatiotemporal complementarity and demand response: a framework based on MCS and DBPSO publication-title: Energy – year: 2020 ident: bib5 article-title: An electric vehicle charging load forecast model based on probability distribution. 2020 IEEE 4th conference on energy internet and energy system integration (EI2) – volume: 15 year: 2022 ident: bib1 article-title: Orderly charging strategy based on optimal time of use price demand response of EVs in distribution network publication-title: Energies – volume: 193 year: 2020 ident: 10.1016/j.energy.2023.127088_bib2 article-title: Orderly charging strategy of battery electric vehicle driven by real-world driving data publication-title: Energy doi: 10.1016/j.energy.2019.116806 – volume: 239 year: 2022 ident: 10.1016/j.energy.2023.127088_bib16 article-title: Two-stage optimal allocation of charging stations based on spatiotemporal complementarity and demand response: a framework based on MCS and DBPSO publication-title: Energy doi: 10.1016/j.energy.2021.122261 – start-page: 1 year: 2019 ident: 10.1016/j.energy.2023.127088_bib6 article-title: Electric vehicle charging load forecasting model considering road network-power grid information publication-title: 2019 International Conference on Technologies and Policies in Electric Power & Energy – volume: 8 start-page: 69 year: 1994 ident: 10.1016/j.energy.2023.127088_bib10 article-title: Methods for optimization of nonlinear problems with discrete variables: a review publication-title: Struct Optim doi: 10.1007/BF01743302 – volume: 129 start-page: 129 year: 2011 ident: 10.1016/j.energy.2023.127088_bib8 article-title: Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons publication-title: Math Program doi: 10.1007/s10107-011-0462-2 – volume: 42 year: 2021 ident: 10.1016/j.energy.2023.127088_bib17 article-title: Electric vehicle charging and discharging scheduling strategy based on local search and competitive learning particle swarm optimization algorithm publication-title: J Energy Storage doi: 10.1016/j.est.2021.102966 – ident: 10.1016/j.energy.2023.127088_bib5 – start-page: 1 year: 2012 ident: 10.1016/j.energy.2023.127088_bib3 article-title: A modeling method for the power demand of EVs based on Monte Carlo simulation publication-title: 2012 Asia-Pacific Power Energy Eng Conference – volume: 8 start-page: 4512 year: 2022 ident: 10.1016/j.energy.2023.127088_bib13 article-title: Multi-objective optimal scheduling of microgrid with EVs publication-title: Energy Rep doi: 10.1016/j.egyr.2022.03.131 – volume: 155 start-page: 1191 year: 2020 ident: 10.1016/j.energy.2023.127088_bib12 article-title: Power forecasting-based coordination dispatch of PV power generation and EVs charging in microgrid publication-title: Renew Energy doi: 10.1016/j.renene.2020.03.169 – volume: 11 start-page: 2071 year: 2020 ident: 10.1016/j.energy.2023.127088_bib7 article-title: Application of new multi-objective optimization algorithm for EV scheduling in smart grid through the uncertainties publication-title: J Ambient Intell Hum Comput doi: 10.1007/s12652-019-01233-1 – volume: 232 year: 2021 ident: 10.1016/j.energy.2023.127088_bib15 article-title: Scheduling strategy of electric vehicle charging considering different requirements of grid and users publication-title: Energy doi: 10.1016/j.energy.2021.121118 – volume: 72 start-page: 484 year: 2014 ident: 10.1016/j.energy.2023.127088_bib20 article-title: Comparison of particle swarm optimization and other metaheuristics on electricity demand estimation: a case study of Iran publication-title: Energy doi: 10.1016/j.energy.2014.05.070 – volume: 8 start-page: 124 year: 2022 ident: 10.1016/j.energy.2023.127088_bib4 article-title: Electric vehicle charging load prediction considering the orderly charging publication-title: Energy Rep doi: 10.1016/j.egyr.2022.10.068 – volume: 15 year: 2022 ident: 10.1016/j.energy.2023.127088_bib1 article-title: Orderly charging strategy based on optimal time of use price demand response of EVs in distribution network publication-title: Energies doi: 10.3390/en15051869 – start-page: 6823 year: 2016 ident: 10.1016/j.energy.2023.127088_bib18 |
| SSID | ssj0005899 |
| Score | 2.6393254 |
| Snippet | With the increasing penetration of electric vehicles (EVs), the harmful impact caused by EV's disorderly charging becomes larger. Aiming for mitigating the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 127088 |
| SubjectTerms | Charging strategy Monte Carlo simulation Particle swarm optimization |
| Title | Orderly charging strategy of electric vehicle based on improved PSO algorithm |
| URI | https://dx.doi.org/10.1016/j.energy.2023.127088 |
| Volume | 271 |
| WOSCitedRecordID | wos000965847400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005899 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgiwQXBIWK8pIP3FZeJY4T28cKFgGCthIFllPkOAnNavFW-6i2_57xI0mXokIPXKIosSdW5oszHs83g9AryZOq0DwishCMsIKmpIhoTVQsS5rVjCnHhfn6kR8eislEHof6nUtXToAbIzYbefZfVQ3XQNmWOnsDdXdC4QKcg9LhCGqH4z8p_sgm05xdDF0OJO8tcOkg3Fa6r3rT6OF5dWo7Du1frLQ7Bo3zLsD58eejoZr9mC-a1enPLce9pwna_KQbHxLfORHerF2sXmUumt7F7UkfPfq--3QF35SZrs1lbwN1sX2eb9mxrCKSMrY1g1JfRSXMgXYv25fquzI9e0_BdFS5AY_sA0Z98-1s2L_9pbrYwTYsbZp7KbmVknspt9EO5akUA7Rz8H48-dAH-whXSbQbfUuidJF-V0fzZyPlkuFx8gDdDysGfOA1_RDdqswuutsSype7aG_ckxWhYZitl4_QpwAF3EIBt1DA8xq3UMABCthBAc8NbqGAAQq4g8Jj9OXt-OT1OxLKZxAN68AVKWVtd1FlyqguMy51yqqs5Fxlqigph3VqBe9DlFzUMdzT8NVmaZxomWiRKrDT99DAzE31BGEalYlSNZiTTNgEfAIEFkWkoiRJYx1n-yhp31euQ255W-Jkll-nrX1Eul5nPrfKX9rzVhV5sA-93ZcDvq7t-fSGT3qG7vXgf44Gq8W6eoHu6PNVs1y8DOD6BVZ2hg0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orderly+charging+strategy+of+electric+vehicle+based+on+improved+PSO+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Du%2C+Wenyi&rft.au=Ma%2C+Juan&rft.au=Yin%2C+Wanjun&rft.date=2023-05-15&rft.issn=0360-5442&rft.volume=271&rft.spage=127088&rft_id=info:doi/10.1016%2Fj.energy.2023.127088&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2023_127088 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |