A linear time deterministic algorithm to find a small subset that approximates the centroid
Given a set of points S in any dimension, we describe a deterministic algorithm for finding a T ⊂ S , | T | = O ( 1 / ε ) such that the centroid of T approximates the centroid of S within a factor 1 + ε for any fixed ε > 0 . We achieve this in linear time by an efficient derandomization of the al...
Gespeichert in:
| Veröffentlicht in: | Information processing letters Jg. 105; H. 1; S. 17 - 19 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
31.12.2007
Elsevier Science Elsevier Sequoia S.A |
| Schlagworte: | |
| ISSN: | 0020-0190, 1872-6119 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Given a set of points
S in any dimension, we describe a deterministic algorithm for finding a
T
⊂
S
,
|
T
|
=
O
(
1
/
ε
)
such that the centroid of
T approximates the centroid of
S within a factor
1
+
ε
for any fixed
ε
>
0
. We achieve this in linear time by an efficient derandomization of the algorithm in [M. Inaba, N. Katoh, H. Imai, Applications of weighted Voronoi diagrams and randomization to variance-based
k-clustering (extended abstract), in: Proceedings of the Tenth Annual Symposium on Computational Geometry, 1994, pp. 332–339]. |
|---|---|
| Bibliographie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0020-0190 1872-6119 |
| DOI: | 10.1016/j.ipl.2007.07.008 |