Real-time hologram generation using a non-iterative modified Gerchberg-Saxton algorithm

Computer-generated holography (CGH) is a technique that aims to produce specific illumination patterns using coherent light. However, traditional CGH algorithms often struggle to balance computational speed with the accuracy of the generated hologram. To address this issue, a non-iterative algorithm...

Full description

Saved in:
Bibliographic Details
Published in:Optics communications Vol. 550; p. 130024
Main Authors: Chen, Chien-Yu, Cheng, Ching-Wen, Chou, Tzu-An, Chuang, Chih-Hao
Format: Journal Article
Language:English
Published: Elsevier B.V 01.01.2024
Subjects:
ISSN:0030-4018, 1873-0310
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Computer-generated holography (CGH) is a technique that aims to produce specific illumination patterns using coherent light. However, traditional CGH algorithms often struggle to balance computational speed with the accuracy of the generated hologram. To address this issue, a non-iterative algorithm named "DL-GSA" is proposed in this paper. DL-GSA combines unsupervised learning in machine learning with convolutional neural networks (CNN) to generate holograms with high accuracy and fixed computational complexity. Simulation experiments reveal that DL-GSA generates hologram patterns faster than the Modified Gerchberg-Saxton algorithm (MGSA) and double-phase retrieval algorithm (DPRA). Furthermore, the average accuracy of the generated holograms is higher than 95 %. These findings suggest that DL-GSA has the potential to significantly enhance the real-time hologram generation capabilities, making it a promising technique for future applications.
AbstractList Computer-generated holography (CGH) is a technique that aims to produce specific illumination patterns using coherent light. However, traditional CGH algorithms often struggle to balance computational speed with the accuracy of the generated hologram. To address this issue, a non-iterative algorithm named "DL-GSA" is proposed in this paper. DL-GSA combines unsupervised learning in machine learning with convolutional neural networks (CNN) to generate holograms with high accuracy and fixed computational complexity. Simulation experiments reveal that DL-GSA generates hologram patterns faster than the Modified Gerchberg-Saxton algorithm (MGSA) and double-phase retrieval algorithm (DPRA). Furthermore, the average accuracy of the generated holograms is higher than 95 %. These findings suggest that DL-GSA has the potential to significantly enhance the real-time hologram generation capabilities, making it a promising technique for future applications.
ArticleNumber 130024
Author Chuang, Chih-Hao
Cheng, Ching-Wen
Chen, Chien-Yu
Chou, Tzu-An
Author_xml – sequence: 1
  givenname: Chien-Yu
  surname: Chen
  fullname: Chen, Chien-Yu
  organization: Graduate Institute of Color and Illumination Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
– sequence: 2
  givenname: Ching-Wen
  surname: Cheng
  fullname: Cheng, Ching-Wen
  organization: Graduate Institute of Color and Illumination Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
– sequence: 3
  givenname: Tzu-An
  surname: Chou
  fullname: Chou, Tzu-An
  organization: Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei City, 10607, Taiwan
– sequence: 4
  givenname: Chih-Hao
  orcidid: 0000-0002-3291-5913
  surname: Chuang
  fullname: Chuang, Chih-Hao
  email: zx610438@gmail.com
  organization: Department of Photonics, Feng Chia University, 100 Wenhwa Rd., Seatwen, Taichung, 40724, Taiwan
BookMark eNqFkEtLw0AQgBepYFv9Bx7yBxJnH2kSD4IUrUJB8IHHZbOZTbck2bJZi_5708aTBz3NMMw3j29GJp3rkJBLCgkFurjaJm4XtGsTBownlAMwcUKmNM94DJzChEwBOMQCaH5GZn2_BQAqeD4l78-omjjYFqONa1ztVRvV2KFXwbou-uhtV0cqGhbGNhyre4xaV1ljsYpW6PWmRF_HL-ozDP2qqZ23YdOek1Ojmh4vfuKcvN3fvS4f4vXT6nF5u441h0WIdVEKZUxFdcoNspLxomJpYTSlC6poiSCQl6UpslQDV3RIDFU5y9JMMKENn5Prca72ru89GqltON4evLKNpCAPiuRWjorkQZEcFQ2w-AXvvG2V__oPuxkxHB7bW_Sy1xY7jZX1qIOsnP17wDfPAYaD
CitedBy_id crossref_primary_10_1016_j_displa_2025_102965
crossref_primary_10_1002_jsid_2048
crossref_primary_10_1002_sdtp_18335
crossref_primary_10_1016_j_optlastec_2025_112584
crossref_primary_10_1002_sdtp_17869
crossref_primary_10_7498_aps_74_20241713
Cites_doi 10.1038/lsa.2017.141
10.1364/OE.402317
10.3390/mps2010002
10.1364/OPTICA.5.000337
10.1364/JOSAB.34.000B42
10.1016/j.optcom.2016.11.061
10.1038/s41524-020-0276-y
10.1364/AO.5.000967
10.1364/OPTICA.5.000458
10.1364/OPTICA.4.001437
10.1117/1.OE.59.10.102413
10.1364/AOP.4.000472
10.1364/OPEX.13.002578
10.1364/AO.58.00A202
10.1080/15980316.2016.1255672
10.1364/OE.384888
10.1364/AO.27.003020
10.1364/AO.9.000639
10.1364/OE.399624
10.1364/AO.57.003859
10.1038/nbt.4106
10.1364/OE.25.015043
10.1109/TPAMI.2015.2439281
10.1080/15980316.2009.9652072
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.optcom.2023.130024
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-0310
ExternalDocumentID 10_1016_j_optcom_2023_130024
S0030401823007721
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LY7
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29N
53G
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AETEA
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EJD
F0J
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
MVM
NDZJH
R2-
SET
SPG
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c306t-c9b4affd1c53fe2b239d259fc1161a1be04e3bbf975c03a1f97f1a82757424cf3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001104048400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0030-4018
IngestDate Tue Nov 18 20:44:25 EST 2025
Sat Nov 29 07:30:49 EST 2025
Fri Feb 23 02:36:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Non-iterative algorithm
Computer-generated hologram
Real-time hologram generation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-c9b4affd1c53fe2b239d259fc1161a1be04e3bbf975c03a1f97f1a82757424cf3
ORCID 0000-0002-3291-5913
ParticipantIDs crossref_citationtrail_10_1016_j_optcom_2023_130024
crossref_primary_10_1016_j_optcom_2023_130024
elsevier_sciencedirect_doi_10_1016_j_optcom_2023_130024
PublicationCentury 2000
PublicationDate 2024-01-01
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Optics communications
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kiarashinejad, Zandehshahvar, Abdollahramezani, Hemmatyar, Pourabolghasem, Adibi (bib12) 2020; 2
Koek, Bhattacharya, Braat, Ooms, Westerweel (bib38) 2005; 13
Nehmetallah, Banerjee (bib5) 2012; 4
Goodman (bib4) 1970; vol. 58
Pitkäaho, Manninen, Naughton (bib16) 2019; 58
Brown, Lohmann (bib1) 1966; 5
Ren, Xu, Lam (bib18) 2018; 5
Leseberg, Frère (bib3) 1988; 27
Eybposh, Caira, Atisa, Chakravarthula, Pégard (bib33) 2020; 28
Ronneberger, Fischer, Brox (bib35) 2015
Kang, Lee, Lee, Kim, Seo (bib28) 2019, June
Gupta, Jauhari, Kulkarni, Jayasuriya, Molnar, Turaga (bib25) 2017
Kiarashinejad, Abdollahramezani, Adibi (bib11) 2020; 6
Kim, Lee, Lee (bib22) 2016
Gerchberg (bib31) 1972; 35
Nehme, Weiss, Michaeli, Shechtman (bib14) 2018; 5
Ren, Xu, Lam (bib20) 2018, February; 10499
Park (bib6) 2017; 18
Häussler, Leister, Stolle (bib7) 2017, June; vol. 10335
Nguyen, Bui, Lam, Raub, Chang, Nehmetallah (bib19) 2017; 25
Rivenson, Göröcs, Günaydin, Zhang, Wang, Ozcan (bib13) 2017; 4
Ouyang, Aristov, Lelek, Hao, Zimmer (bib15) 2018; 36
Park, Park (bib26) 2020; 28
Chang, Lin, Chen (bib37) 2017; 389
Lim, Son, Kim, Nah, Mu Lee (bib23) 2017
Lee, Jeong, Cho, Yoo, Lee, Lee (bib29) 2020; 28
Kingma, Ba (bib34) 2014
Horisaki, Takagi, Tanida (bib27) 2018; 57
Rivenson, Zhang, Günaydın, Teng, Ozcan (bib17) 2018; 7
Lee, Jeong, Cho, Yoo, Lee (bib30) 2020, June
Xiao, Kaplanyan, Fix, Chapman, Lanman (bib24) 2018
Dong, Loy, He, Tang (bib21) 2015; 38
Wang, Dong, Christopher, Kadis, Mouthaan, Yang, Wilkinson (bib8) 2020; 59
Kim, Kim (bib10) 2009; 10
Lee (bib2) 1970; 9
Pozzi, Maddalena, Ceffa, Soloviev, Vdovin, Carroll, Verhaegen (bib9) 2018; 2
Chen, Li, Chang, Chuang, Chang (bib32) 2017; 34
Ioffe, Szegedy (bib36) 2015, June
Pitkäaho (10.1016/j.optcom.2023.130024_bib16) 2019; 58
Wang (10.1016/j.optcom.2023.130024_bib8) 2020; 59
Rivenson (10.1016/j.optcom.2023.130024_bib17) 2018; 7
Häussler (10.1016/j.optcom.2023.130024_bib7) 2017; vol. 10335
Chang (10.1016/j.optcom.2023.130024_bib37) 2017; 389
Gupta (10.1016/j.optcom.2023.130024_bib25) 2017
Nehme (10.1016/j.optcom.2023.130024_bib14) 2018; 5
Goodman (10.1016/j.optcom.2023.130024_bib4) 1970; vol. 58
Nehmetallah (10.1016/j.optcom.2023.130024_bib5) 2012; 4
Pozzi (10.1016/j.optcom.2023.130024_bib9) 2018; 2
Horisaki (10.1016/j.optcom.2023.130024_bib27) 2018; 57
Eybposh (10.1016/j.optcom.2023.130024_bib33) 2020; 28
Park (10.1016/j.optcom.2023.130024_bib26) 2020; 28
Lee (10.1016/j.optcom.2023.130024_bib2) 1970; 9
Rivenson (10.1016/j.optcom.2023.130024_bib13) 2017; 4
Ouyang (10.1016/j.optcom.2023.130024_bib15) 2018; 36
Kiarashinejad (10.1016/j.optcom.2023.130024_bib11) 2020; 6
Kingma (10.1016/j.optcom.2023.130024_bib34) 2014
Kim (10.1016/j.optcom.2023.130024_bib22) 2016
Ren (10.1016/j.optcom.2023.130024_bib18) 2018; 5
Lee (10.1016/j.optcom.2023.130024_bib29) 2020; 28
Xiao (10.1016/j.optcom.2023.130024_bib24) 2018
Lee (10.1016/j.optcom.2023.130024_bib30) 2020
Chen (10.1016/j.optcom.2023.130024_bib32) 2017; 34
Lim (10.1016/j.optcom.2023.130024_bib23) 2017
Nguyen (10.1016/j.optcom.2023.130024_bib19) 2017; 25
Brown (10.1016/j.optcom.2023.130024_bib1) 1966; 5
Ren (10.1016/j.optcom.2023.130024_bib20) 2018; 10499
Ronneberger (10.1016/j.optcom.2023.130024_bib35) 2015
Dong (10.1016/j.optcom.2023.130024_bib21) 2015; 38
Leseberg (10.1016/j.optcom.2023.130024_bib3) 1988; 27
Ioffe (10.1016/j.optcom.2023.130024_bib36) 2015
Gerchberg (10.1016/j.optcom.2023.130024_bib31) 1972; 35
Park (10.1016/j.optcom.2023.130024_bib6) 2017; 18
Kiarashinejad (10.1016/j.optcom.2023.130024_bib12) 2020; 2
Kim (10.1016/j.optcom.2023.130024_bib10) 2009; 10
Kang (10.1016/j.optcom.2023.130024_bib28) 2019
Koek (10.1016/j.optcom.2023.130024_bib38) 2005; 13
References_xml – volume: 2
  year: 2020
  ident: bib12
  article-title: Knowledge discovery in nanophotonics using geometric deep learning
  publication-title: Adv. Intellig. Syst.
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib35
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18
– volume: 6
  start-page: 12
  year: 2020
  ident: bib11
  article-title: Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures
  publication-title: npj Comput. Mater.
– start-page: 1
  year: 2018
  end-page: 2
  ident: bib24
  article-title: Deepfocus: learned image synthesis for computational display
  publication-title: ACM SIGGRAPH 2018 Talks
– volume: 18
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib6
  article-title: Recent progress in computer-generated holography for three-dimensional scenes
  publication-title: J. Inform. Dis.
– volume: 13
  start-page: 2578
  year: 2005
  end-page: 2589
  ident: bib38
  article-title: Influence of virtual images on the signal-to-noise ratio in digital in-line particle holography
  publication-title: Opt Express
– year: 2020, June
  ident: bib30
  article-title: Complex hologram generation of multi-depth images using deep neural network
  publication-title: 3D Image Acquisition and Display: Technology, Perception and Applications (Pp. JTh2A-12)
– volume: 25
  start-page: 15043
  year: 2017
  end-page: 15057
  ident: bib19
  article-title: Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection
  publication-title: Opt Express
– volume: 38
  start-page: 295
  year: 2015
  end-page: 307
  ident: bib21
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1
  year: 2019, June
  end-page: 2
  ident: bib28
  article-title: Interference pattern generation by using deep learning based on GAN
  publication-title: 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC)
– volume: 34
  start-page: B42
  year: 2017
  end-page: B48
  ident: bib32
  article-title: 3-D modified Gerchberg–Saxton algorithm developed for panoramic computer-generated phase-only holographic display
  publication-title: JOSA B
– volume: 58
  start-page: A202
  year: 2019
  end-page: A208
  ident: bib16
  article-title: Focus prediction in digital holographic microscopy using deep convolutional neural networks
  publication-title: Appl. Opt.
– volume: 10499
  start-page: 157
  year: 2018, February
  end-page: 164
  ident: bib20
  article-title: Autofocusing in digital holography using deep learning
  publication-title: Three-Dimension. Multidimens. Microsc.: Imag. Acquisit. Process. XXV
– volume: 59
  year: 2020
  ident: bib8
  article-title: Hardware implementations of computer-generated holography: a review
  publication-title: Opt. Eng.
– volume: 9
  start-page: 639
  year: 1970
  end-page: 643
  ident: bib2
  article-title: Sampled Fourier transform hologram generated by computer
  publication-title: Appl. Opt.
– volume: 5
  start-page: 967
  year: 1966
  end-page: 969
  ident: bib1
  article-title: Complex spatial filtering with binary masks
  publication-title: Appl. Opt.
– volume: 2
  start-page: 2
  year: 2018
  ident: bib9
  article-title: Fast calculation of computer generated holograms for 3d photostimulation through compressive-sensing gerchberg–saxton algorithm
  publication-title: Method. Protoc.
– volume: 10
  start-page: 6
  year: 2009
  end-page: 15
  ident: bib10
  article-title: Efficient generation of computer‐generated hologram patterns using spatially redundant data on a 3d object and the novel look‐up table method
  publication-title: J. Inform. Dis.
– year: 2014
  ident: bib34
  article-title: Adam: A Method for Stochastic Optimization
– volume: 5
  start-page: 337
  year: 2018
  end-page: 344
  ident: bib18
  article-title: Learning-based nonparametric autofocusing for digital holography
  publication-title: Optica
– volume: 28
  start-page: 5393
  year: 2020
  end-page: 5409
  ident: bib26
  article-title: Hologram conversion for speckle free reconstruction using light field extraction and deep learning
  publication-title: Opt. Exp.
– volume: vol. 58
  start-page: 45
  year: 1970
  end-page: 46
  ident: bib4
  publication-title: Introduction to Fourier Optics (McGraw-Hill, 1996)
– start-page: 1646
  year: 2016
  end-page: 1654
  ident: bib22
  article-title: Accurate image super-resolution using very deep convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 11
  year: 2017
  end-page: 20
  ident: bib25
  article-title: Compressive light field reconstructions using deep learning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
– volume: 35
  start-page: 237
  year: 1972
  end-page: 246
  ident: bib31
  article-title: A practical algorithm for the determination of plane from image and diffraction pictures
  publication-title: Optik
– volume: 7
  year: 2018
  ident: bib17
  article-title: Phase recovery and holographic image reconstruction using deep learning in neural networks
  publication-title: Light Sci. Appl.
– volume: 57
  start-page: 3859
  year: 2018
  end-page: 3863
  ident: bib27
  article-title: Deep-learning-generated holography
  publication-title: Appl. Opt.
– start-page: 448
  year: 2015, June
  end-page: 456
  ident: bib36
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: International Conference on Machine Learning
– volume: vol. 10335
  start-page: 177
  year: 2017, June
  end-page: 187
  ident: bib7
  article-title: Large holographic 3D display for real-time computer-generated holography
  publication-title: Digital Optical Technologies 2017
– volume: 4
  start-page: 472
  year: 2012
  end-page: 553
  ident: bib5
  article-title: Applications of digital and analog holography in three-dimensional imaging
  publication-title: Adv. Opt Photon
– start-page: 136
  year: 2017
  end-page: 144
  ident: bib23
  article-title: Enhanced deep residual networks for single image super-resolution
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
– volume: 4
  start-page: 1437
  year: 2017
  end-page: 1443
  ident: bib13
  article-title: Deep learning microscopy
  publication-title: Optica
– volume: 5
  start-page: 458
  year: 2018
  end-page: 464
  ident: bib14
  article-title: Deep-STORM: super-resolution single-molecule microscopy by deep learning
  publication-title: Optica
– volume: 36
  start-page: 460
  year: 2018
  end-page: 468
  ident: bib15
  article-title: Deep learning massively accelerates super-resolution localization microscopy
  publication-title: Nat. Biotechnol.
– volume: 389
  start-page: 150
  year: 2017
  end-page: 158
  ident: bib37
  article-title: Image multiplexing and authentication based on double phase retrieval in Fresnel transform domain
  publication-title: Opt Commun.
– volume: 27
  start-page: 3020
  year: 1988
  end-page: 3024
  ident: bib3
  article-title: Computer-generated holograms of 3-D objects composed of tilted planar segments
  publication-title: Appl. Opt.
– volume: 28
  start-page: 27137
  year: 2020
  end-page: 27154
  ident: bib29
  article-title: Deep neural network for multi-depth hologram generation and its training strategy
  publication-title: Opt. Exp.
– volume: 28
  start-page: 26636
  year: 2020
  end-page: 26650
  ident: bib33
  article-title: DeepCGH: 3D computer-generated holography using deep learning
  publication-title: Opt. Exp.
– volume: 10499
  start-page: 157
  year: 2018
  ident: 10.1016/j.optcom.2023.130024_bib20
  article-title: Autofocusing in digital holography using deep learning
  publication-title: Three-Dimension. Multidimens. Microsc.: Imag. Acquisit. Process. XXV
– year: 2020
  ident: 10.1016/j.optcom.2023.130024_bib30
  article-title: Complex hologram generation of multi-depth images using deep neural network
– volume: 7
  issue: 2
  year: 2018
  ident: 10.1016/j.optcom.2023.130024_bib17
  article-title: Phase recovery and holographic image reconstruction using deep learning in neural networks
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2017.141
– volume: 28
  start-page: 27137
  issue: 18
  year: 2020
  ident: 10.1016/j.optcom.2023.130024_bib29
  article-title: Deep neural network for multi-depth hologram generation and its training strategy
  publication-title: Opt. Exp.
  doi: 10.1364/OE.402317
– volume: 2
  start-page: 2
  issue: 1
  year: 2018
  ident: 10.1016/j.optcom.2023.130024_bib9
  article-title: Fast calculation of computer generated holograms for 3d photostimulation through compressive-sensing gerchberg–saxton algorithm
  publication-title: Method. Protoc.
  doi: 10.3390/mps2010002
– volume: 5
  start-page: 337
  issue: 4
  year: 2018
  ident: 10.1016/j.optcom.2023.130024_bib18
  article-title: Learning-based nonparametric autofocusing for digital holography
  publication-title: Optica
  doi: 10.1364/OPTICA.5.000337
– volume: vol. 10335
  start-page: 177
  year: 2017
  ident: 10.1016/j.optcom.2023.130024_bib7
  article-title: Large holographic 3D display for real-time computer-generated holography
– start-page: 1
  year: 2019
  ident: 10.1016/j.optcom.2023.130024_bib28
  article-title: Interference pattern generation by using deep learning based on GAN
– volume: 34
  start-page: B42
  issue: 5
  year: 2017
  ident: 10.1016/j.optcom.2023.130024_bib32
  article-title: 3-D modified Gerchberg–Saxton algorithm developed for panoramic computer-generated phase-only holographic display
  publication-title: JOSA B
  doi: 10.1364/JOSAB.34.000B42
– volume: 35
  start-page: 237
  issue: 2
  year: 1972
  ident: 10.1016/j.optcom.2023.130024_bib31
  article-title: A practical algorithm for the determination of plane from image and diffraction pictures
  publication-title: Optik
– volume: 389
  start-page: 150
  year: 2017
  ident: 10.1016/j.optcom.2023.130024_bib37
  article-title: Image multiplexing and authentication based on double phase retrieval in Fresnel transform domain
  publication-title: Opt Commun.
  doi: 10.1016/j.optcom.2016.11.061
– volume: 6
  start-page: 12
  issue: 1
  year: 2020
  ident: 10.1016/j.optcom.2023.130024_bib11
  article-title: Deep learning approach based on dimensionality reduction for designing electromagnetic nanostructures
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-0276-y
– volume: 5
  start-page: 967
  issue: 6
  year: 1966
  ident: 10.1016/j.optcom.2023.130024_bib1
  article-title: Complex spatial filtering with binary masks
  publication-title: Appl. Opt.
  doi: 10.1364/AO.5.000967
– volume: 5
  start-page: 458
  issue: 4
  year: 2018
  ident: 10.1016/j.optcom.2023.130024_bib14
  article-title: Deep-STORM: super-resolution single-molecule microscopy by deep learning
  publication-title: Optica
  doi: 10.1364/OPTICA.5.000458
– start-page: 136
  year: 2017
  ident: 10.1016/j.optcom.2023.130024_bib23
  article-title: Enhanced deep residual networks for single image super-resolution
– volume: 4
  start-page: 1437
  issue: 11
  year: 2017
  ident: 10.1016/j.optcom.2023.130024_bib13
  article-title: Deep learning microscopy
  publication-title: Optica
  doi: 10.1364/OPTICA.4.001437
– volume: 59
  issue: 10
  year: 2020
  ident: 10.1016/j.optcom.2023.130024_bib8
  article-title: Hardware implementations of computer-generated holography: a review
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.59.10.102413
– volume: 4
  start-page: 472
  issue: 4
  year: 2012
  ident: 10.1016/j.optcom.2023.130024_bib5
  article-title: Applications of digital and analog holography in three-dimensional imaging
  publication-title: Adv. Opt Photon
  doi: 10.1364/AOP.4.000472
– volume: 13
  start-page: 2578
  issue: 7
  year: 2005
  ident: 10.1016/j.optcom.2023.130024_bib38
  article-title: Influence of virtual images on the signal-to-noise ratio in digital in-line particle holography
  publication-title: Opt Express
  doi: 10.1364/OPEX.13.002578
– volume: 58
  start-page: A202
  issue: 5
  year: 2019
  ident: 10.1016/j.optcom.2023.130024_bib16
  article-title: Focus prediction in digital holographic microscopy using deep convolutional neural networks
  publication-title: Appl. Opt.
  doi: 10.1364/AO.58.00A202
– start-page: 1
  year: 2018
  ident: 10.1016/j.optcom.2023.130024_bib24
  article-title: Deepfocus: learned image synthesis for computational display
– start-page: 1646
  year: 2016
  ident: 10.1016/j.optcom.2023.130024_bib22
  article-title: Accurate image super-resolution using very deep convolutional networks
– volume: 18
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.optcom.2023.130024_bib6
  article-title: Recent progress in computer-generated holography for three-dimensional scenes
  publication-title: J. Inform. Dis.
  doi: 10.1080/15980316.2016.1255672
– volume: 28
  start-page: 5393
  issue: 4
  year: 2020
  ident: 10.1016/j.optcom.2023.130024_bib26
  article-title: Hologram conversion for speckle free reconstruction using light field extraction and deep learning
  publication-title: Opt. Exp.
  doi: 10.1364/OE.384888
– start-page: 234
  year: 2015
  ident: 10.1016/j.optcom.2023.130024_bib35
  article-title: U-net: convolutional networks for biomedical image segmentation
– volume: 27
  start-page: 3020
  issue: 14
  year: 1988
  ident: 10.1016/j.optcom.2023.130024_bib3
  article-title: Computer-generated holograms of 3-D objects composed of tilted planar segments
  publication-title: Appl. Opt.
  doi: 10.1364/AO.27.003020
– volume: 9
  start-page: 639
  issue: 3
  year: 1970
  ident: 10.1016/j.optcom.2023.130024_bib2
  article-title: Sampled Fourier transform hologram generated by computer
  publication-title: Appl. Opt.
  doi: 10.1364/AO.9.000639
– volume: 28
  start-page: 26636
  issue: 18
  year: 2020
  ident: 10.1016/j.optcom.2023.130024_bib33
  article-title: DeepCGH: 3D computer-generated holography using deep learning
  publication-title: Opt. Exp.
  doi: 10.1364/OE.399624
– volume: 57
  start-page: 3859
  issue: 14
  year: 2018
  ident: 10.1016/j.optcom.2023.130024_bib27
  article-title: Deep-learning-generated holography
  publication-title: Appl. Opt.
  doi: 10.1364/AO.57.003859
– volume: 2
  issue: 2
  year: 2020
  ident: 10.1016/j.optcom.2023.130024_bib12
  article-title: Knowledge discovery in nanophotonics using geometric deep learning
  publication-title: Adv. Intellig. Syst.
– volume: 36
  start-page: 460
  issue: 5
  year: 2018
  ident: 10.1016/j.optcom.2023.130024_bib15
  article-title: Deep learning massively accelerates super-resolution localization microscopy
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4106
– year: 2014
  ident: 10.1016/j.optcom.2023.130024_bib34
– start-page: 11
  year: 2017
  ident: 10.1016/j.optcom.2023.130024_bib25
  article-title: Compressive light field reconstructions using deep learning
– volume: vol. 58
  start-page: 45
  year: 1970
  ident: 10.1016/j.optcom.2023.130024_bib4
– volume: 25
  start-page: 15043
  issue: 13
  year: 2017
  ident: 10.1016/j.optcom.2023.130024_bib19
  article-title: Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection
  publication-title: Opt Express
  doi: 10.1364/OE.25.015043
– volume: 38
  start-page: 295
  issue: 2
  year: 2015
  ident: 10.1016/j.optcom.2023.130024_bib21
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2439281
– volume: 10
  start-page: 6
  issue: 1
  year: 2009
  ident: 10.1016/j.optcom.2023.130024_bib10
  article-title: Efficient generation of computer‐generated hologram patterns using spatially redundant data on a 3d object and the novel look‐up table method
  publication-title: J. Inform. Dis.
  doi: 10.1080/15980316.2009.9652072
– start-page: 448
  year: 2015
  ident: 10.1016/j.optcom.2023.130024_bib36
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
SSID ssj0001438
Score 2.451259
Snippet Computer-generated holography (CGH) is a technique that aims to produce specific illumination patterns using coherent light. However, traditional CGH...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 130024
SubjectTerms Computer-generated hologram
Deep learning
Non-iterative algorithm
Real-time hologram generation
Title Real-time hologram generation using a non-iterative modified Gerchberg-Saxton algorithm
URI https://dx.doi.org/10.1016/j.optcom.2023.130024
Volume 550
WOSCitedRecordID wos001104048400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-0310
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001438
  issn: 0030-4018
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELa6sCtxWfHYFbAL8oEbMkpip2mOVcUucADEQ5RT5Dh2U9Q2VUlQxa_fceyk4SEeh71EkRs7lufLeMad-QahPdhFQu77kghN3Mq8xCFcCp-4oXQTR6jEdXhZbCI4Pe30--F5q_VY5cI8jILJpDOfh9P_KmpoA2Hr1NlPiLseFBrgHoQOVxA7XD8k-Asw_YguGb-fGkLqsS6TLK2ki_JsgO-D108Mo7IOHRpnyVBpY_Sv1JWk5WxALvlcM27w0SCbDfN03LRiz6YlubNoJpfUtnnP5nv0UtAa5LZotg_sD5MBuVnkoPXSrChx81iQbqO14HWHlBzxrHlC4bHGCYXVutQBP9XqWat1fcM3a_Wm_lPN5FK_UOnmdOHuIJvmOr5Hl3s_WDz-lEH72c5WxxtWoWx3kRkl0qNEZpQvaNkL_BCU-nL3-LB_Uu_jujC8IfU0s68SL8vowJezed2waRgrV6vou_UycNegYw215GQdfSujfcX9BrqpMYIrjOAFRnCJEczxE4zgCiP4OUZwjZEf6PrP4VXviNgKG_BpOu2ciDBmXMEHKXyqpBd7NEzAH1bCBUeAu7F0mKRxrMLAFw7lLtwol3dgvQLmMaHoT7QEc5GbCHfavO1TIZlyJAs8GrOSOIpJ7iU0iZMtRKvliYSln9dVUEbRW8LZQqTuNTX0K-88H1QrH1kT0piGEcDpzZ7bn3zTL7SywPpvtJTPCrmDvoqHfHg_27VY-geyCpWp
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+hologram+generation+using+a+non-iterative+modified+Gerchberg-Saxton+algorithm&rft.jtitle=Optics+communications&rft.au=Chen%2C+Chien-Yu&rft.au=Cheng%2C+Ching-Wen&rft.au=Chou%2C+Tzu-An&rft.au=Chuang%2C+Chih-Hao&rft.date=2024-01-01&rft.issn=0030-4018&rft.volume=550&rft.spage=130024&rft_id=info:doi/10.1016%2Fj.optcom.2023.130024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optcom_2023_130024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-4018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-4018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-4018&client=summon