Real-time hologram generation using a non-iterative modified Gerchberg-Saxton algorithm

Computer-generated holography (CGH) is a technique that aims to produce specific illumination patterns using coherent light. However, traditional CGH algorithms often struggle to balance computational speed with the accuracy of the generated hologram. To address this issue, a non-iterative algorithm...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optics communications Ročník 550; s. 130024
Hlavní autoři: Chen, Chien-Yu, Cheng, Ching-Wen, Chou, Tzu-An, Chuang, Chih-Hao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2024
Témata:
ISSN:0030-4018, 1873-0310
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Computer-generated holography (CGH) is a technique that aims to produce specific illumination patterns using coherent light. However, traditional CGH algorithms often struggle to balance computational speed with the accuracy of the generated hologram. To address this issue, a non-iterative algorithm named "DL-GSA" is proposed in this paper. DL-GSA combines unsupervised learning in machine learning with convolutional neural networks (CNN) to generate holograms with high accuracy and fixed computational complexity. Simulation experiments reveal that DL-GSA generates hologram patterns faster than the Modified Gerchberg-Saxton algorithm (MGSA) and double-phase retrieval algorithm (DPRA). Furthermore, the average accuracy of the generated holograms is higher than 95 %. These findings suggest that DL-GSA has the potential to significantly enhance the real-time hologram generation capabilities, making it a promising technique for future applications.
ISSN:0030-4018
1873-0310
DOI:10.1016/j.optcom.2023.130024