Multi-relation graph convolutional network for Alzheimer’s disease diagnosis using structural MRI

Structural magnetic resonance imaging (sMRI) is widely applied in Alzheimer’s disease (AD) diagnosis tasks by reflecting structural anomalies of the brain. Currently, most existing methods solely focus on pathological changes in disease-affected brain regions and ignore their potential associations...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 270; s. 110546
Hlavní autoři: Zhang, Jin, He, Xiaohai, Qing, Linbo, Chen, Xiang, Liu, Yan, Chen, Honggang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 21.06.2023
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Structural magnetic resonance imaging (sMRI) is widely applied in Alzheimer’s disease (AD) diagnosis tasks by reflecting structural anomalies of the brain. Currently, most existing methods solely focus on pathological changes in disease-affected brain regions and ignore their potential associations and interactions, which provide valuable information for brain investigation. Meanwhile, how to construct effective structural brain graphs composed of nodes and edges remains appealing. To tackle these issues, in this paper, we propose a novel multi-relation reasoning network (MRN) to learn multi-relation-aware representations of brain regions in sMRI data for AD diagnosis, including spatial correlations and topological information. We frame distinguishing different disease statuses as the graph classification problem. Each scan is regarded as a graph, where nodes represent brain regions with abnormal changes selected by group-wise comparison, and edges denote semantic or spatial relations between them. Specifically, the dilated convolution module learns informative features to provide discriminative node representations for constructing brain graphs. Multi-type inter-region relations are then captured by the local reasoning module based on the graph convolutional network to provide a reliable basis for AD diagnosis, including geometric correlations and semantic interactions. Moreover, global reasoning is employed on the learned graph structure to achieve information aggregation and gradually generate the subject-level representation for AD diagnosis. We evaluate the effectiveness of our proposed method on the ADNI dataset, and extensive experiments demonstrate that our MRN achieves competitive performance for multiple AD-related classification tasks, compared to several state-of-the-art methods. •A novel multi-relation reasoning network for sMRI-based AD diagnosis is proposed.•Brain connectivity graphs are constructed based on disease-related brain regions.•Potential interactions between discriminative brain regions in sMRI are learned.•The diagnosis results achieve promising performance for AD diagnosis tasks.
AbstractList Structural magnetic resonance imaging (sMRI) is widely applied in Alzheimer’s disease (AD) diagnosis tasks by reflecting structural anomalies of the brain. Currently, most existing methods solely focus on pathological changes in disease-affected brain regions and ignore their potential associations and interactions, which provide valuable information for brain investigation. Meanwhile, how to construct effective structural brain graphs composed of nodes and edges remains appealing. To tackle these issues, in this paper, we propose a novel multi-relation reasoning network (MRN) to learn multi-relation-aware representations of brain regions in sMRI data for AD diagnosis, including spatial correlations and topological information. We frame distinguishing different disease statuses as the graph classification problem. Each scan is regarded as a graph, where nodes represent brain regions with abnormal changes selected by group-wise comparison, and edges denote semantic or spatial relations between them. Specifically, the dilated convolution module learns informative features to provide discriminative node representations for constructing brain graphs. Multi-type inter-region relations are then captured by the local reasoning module based on the graph convolutional network to provide a reliable basis for AD diagnosis, including geometric correlations and semantic interactions. Moreover, global reasoning is employed on the learned graph structure to achieve information aggregation and gradually generate the subject-level representation for AD diagnosis. We evaluate the effectiveness of our proposed method on the ADNI dataset, and extensive experiments demonstrate that our MRN achieves competitive performance for multiple AD-related classification tasks, compared to several state-of-the-art methods. •A novel multi-relation reasoning network for sMRI-based AD diagnosis is proposed.•Brain connectivity graphs are constructed based on disease-related brain regions.•Potential interactions between discriminative brain regions in sMRI are learned.•The diagnosis results achieve promising performance for AD diagnosis tasks.
ArticleNumber 110546
Author He, Xiaohai
Liu, Yan
Zhang, Jin
Chen, Honggang
Qing, Linbo
Chen, Xiang
Author_xml – sequence: 1
  givenname: Jin
  surname: Zhang
  fullname: Zhang, Jin
  organization: College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
– sequence: 2
  givenname: Xiaohai
  orcidid: 0000-0002-2967-2682
  surname: He
  fullname: He, Xiaohai
  email: hxh@scu.edu.cn
  organization: College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
– sequence: 3
  givenname: Linbo
  surname: Qing
  fullname: Qing, Linbo
  organization: College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
– sequence: 4
  givenname: Xiang
  orcidid: 0000-0003-4203-4578
  surname: Chen
  fullname: Chen, Xiang
  organization: Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, UK
– sequence: 5
  givenname: Yan
  surname: Liu
  fullname: Liu, Yan
  organization: Department of Neurology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, 610031, China
– sequence: 6
  givenname: Honggang
  surname: Chen
  fullname: Chen, Honggang
  organization: College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
BookMark eNqFkM1KAzEUhYNUsK2-gYt5gRlvMtP5cSGU4k-hRRBdh0zmpk07nZQkU6krX8PX80mcWlcudHXgwne45xuQXmMaJOSSQkSBpleraN0Yt3cRAxZHlMIoSU9In-YZC7MEih7pQzGCMIMRPSMD51YAwBjN-0TO29rr0GItvDZNsLBiuwykaXambg8XUQcN-ldj14EyNhjXb0vUG7Sf7x8uqLRD4bBLseg-0C5onW4WgfO2lb61HTx_mp6TUyVqhxc_OSQvd7fPk4dw9ng_nYxnoYwh9aGEBFRJC1pkksmirDCTWNAKyqRQaSZTyJnKR0oIViBTKmaVgCSWKU1LkaQYD8n1sVda45xFxaX237O8FbrmFPhBF1_xoy5-0MWPujo4-QVvrd4Iu_8Puzli2A3babTcSY2NxEpblJ5XRv9d8AWatI0N
CitedBy_id crossref_primary_10_1016_j_knosys_2024_111901
crossref_primary_10_1186_s12880_025_01836_5
crossref_primary_10_1016_j_bspc_2025_108472
crossref_primary_10_3389_fneur_2025_1626922
crossref_primary_10_1038_s41598_024_78712_9
crossref_primary_10_1162_netn_a_00423
crossref_primary_10_3390_brainsci15050523
crossref_primary_10_1007_s13198_024_02377_w
crossref_primary_10_1016_j_eswa_2024_125809
crossref_primary_10_1109_TNNLS_2025_3569650
crossref_primary_10_1016_j_engappai_2025_111058
crossref_primary_10_1002_ima_22967
crossref_primary_10_1016_j_cmpb_2025_108954
crossref_primary_10_1155_2024_8862647
crossref_primary_10_3389_fphys_2025_1515881
crossref_primary_10_7717_peerj_cs_2056
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_1016_j_knosys_2025_113175
crossref_primary_10_1088_1402_4896_add2a6
crossref_primary_10_1016_j_compbiomed_2025_111028
crossref_primary_10_1016_j_media_2024_103211
Cites_doi 10.1109/TMI.2020.3022591
10.1109/JBHI.2020.3006925
10.1109/TMI.2006.887380
10.1016/j.eswa.2021.115549
10.1016/S0197-4580(03)00084-8
10.1186/s40708-018-0080-3
10.1016/j.knosys.2020.106688
10.1016/j.compmedimag.2015.04.007
10.1016/j.neuroimage.2012.01.021
10.1109/JBHI.2017.2704614
10.1109/CVPR.2016.90
10.2147/IJN.S200490
10.1016/j.neuroimage.2019.116459
10.1016/j.compmedimag.2018.08.002
10.1016/j.neucom.2020.07.102
10.1016/j.media.2019.01.007
10.1145/3107411.3108224
10.1016/j.cmpb.2021.106581
10.1093/brain/awaa137
10.1016/j.cmpb.2016.05.009
10.1002/hbm.25820
10.1016/j.neuroimage.2019.116189
10.1109/ICCV.2019.00475
10.3389/fnins.2015.00307
10.1109/ISBI.2019.8759455
10.1016/j.knosys.2022.108815
10.1109/TMI.2019.2958943
10.1093/brain/awm319
10.1016/j.media.2017.10.005
10.1136/jnnp.71.4.441
10.1016/S0197-4580(99)00107-4
10.1016/j.neuron.2013.01.002
10.1016/j.media.2020.101694
10.1038/s41593-020-0624-8
10.1016/j.media.2018.06.001
10.1109/TMI.2021.3063150
10.1002/jmri.21049
10.1109/TMI.2021.3077079
10.2307/2332226
10.1016/j.media.2022.102419
10.1038/nrneurol.2009.215
10.1109/TMI.2021.3099641
10.1038/s41467-021-21057-y
10.1016/j.compbiomed.2017.10.002
10.1016/j.inffus.2021.07.013
10.1016/j.knosys.2021.107942
10.3389/fnagi.2015.00048
10.1109/TPAMI.2018.2889096
10.1016/j.neuroimage.2019.01.031
10.1002/hbm.23091
10.1109/JBHI.2018.2791863
10.1016/j.ipm.2009.03.002
10.1073/pnas.052587399
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2023.110546
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2023_110546
S0950705123002964
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
~HD
ID FETCH-LOGICAL-c306t-c040fb19197c2c9bde7ce91d0b49f67c6082f85faa29e2ff32da043c616ba46e3
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000986061200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Sat Nov 29 07:07:30 EST 2025
Tue Nov 18 20:55:39 EST 2025
Fri Feb 23 02:40:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Medical image processing
Graph convolutional network
Alzheimer’s disease
Structural magnetic resonance imaging
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-c040fb19197c2c9bde7ce91d0b49f67c6082f85faa29e2ff32da043c616ba46e3
ORCID 0000-0002-2967-2682
0000-0003-4203-4578
ParticipantIDs crossref_citationtrail_10_1016_j_knosys_2023_110546
crossref_primary_10_1016_j_knosys_2023_110546
elsevier_sciencedirect_doi_10_1016_j_knosys_2023_110546
PublicationCentury 2000
PublicationDate 2023-06-21
PublicationDateYYYYMMDD 2023-06-21
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-21
  day: 21
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b57) 2017; 30
Fischl (b52) 2012; 62
Payan, Montana (b49) 2015
Habib, McCabe, Medina, Varshavsky, Kitsberg, Dvir-Szternfeld, Green, Dionne, Nguyen, Marshall (b5) 2020; 23
Korolev, Safiullin, Belyaev, Dodonova (b41) 2017
Zhu, Ma, Yuan, Zhu (b45) 2022; 77
K. Li, Y. Zhang, K. Li, Y. Li, Y. Fu, Visual semantic reasoning for image-text matching, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 4654–4662.
Poloni, de Oliveira, Tam, Ferrari, Initiative (b67) 2021; 419
Kingma, Ba (b60) 2014
Pereira, Fantini, Lotufo, Rittner (b65) 2020
Islam, Zhang (b33) 2018; 5
Wen, Thibeau-Sutre, Diaz-Melo, Samper-González, Routier, Bottani, Dormont, Durrleman, Burgos, Colliot (b7) 2020; 63
Liu, Zhang, Nie, Yap, Shen (b19) 2018; 22
Zhu, Suk, Zhu, Thung, Wu, Shen (b3) 2015
Roe, Vidal-Piñeiro, Sørensen, Brandmaier, Düzel, Gonzalez, Kievit, Knights, Kühn, Lindenberger (b74) 2021; 12
Wang, Zhang, Shen, Liu (b39) 2019; 53
Pennanen, Kivipelto, Tuomainen, Hartikainen, Hänninen, Laakso, Hallikainen, Vanhanen, Nissinen, Helkala (b70) 2004; 25
Zhang, Han, Zhu, Sun, Zhang (b42) 2021
Ahmed, Mizotin, Benois-Pineau, Allard, Catheline, Amar, Initiative (b31) 2015; 44
Chung, Gülçehre, Cho, Bengio (b59) 2014
Lian, Liu, Zhang, Shen (b24) 2018; 42
Lian, Liu, Pan, Shen (b36) 2020
Liu, Lu, Pan, Xu, Lan, Luo (b43) 2022; 238
Zhu, Sun, Huang, Han, Zhang (b25) 2021; 40
Salvatore, Cerasa, Battista, Gilardi, Quattrone, Castiglioni (b16) 2015; 9
Ye, He, Peng, Wu, Qiao (b56) 2020
Zhan, Zhou, Wang, Jin, Jahanshad, Prasad, Nir, Leonardo, Ye, Thompson (b2) 2015; 7
Lei, Zhang, Liu, Xu, Yue, Cao, Hu, Yu, Yang, Wang (b14) 2022
Liu, Zhang, Adeli, Shen (b38) 2018; 43
Rashid, Gupta, Gupta, Tanveer (b34) 2022
Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack Jr., Ashburner, Frackowiak (b28) 2008; 131
Gonuguntla, Yang, Guan, Koo, Kim (b40) 2022
Pan, Phan, Adel, Fossati, Gaidon, Wojak, Guedj (b10) 2020; 40
Plocharski, Østergaard, Initiative (b27) 2016; 133
Tiwari, Atluri, Kaushik, Yndart, Nair (b1) 2019; 14
K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
Zhao, Ma, Jiang, Zeng, Wang, Li (b61) 2020; 25
Ning, Xiao, Feng, Chen, Zhang (b55) 2021; 40
Spasov, Passamonti, Duggento, Lio, Toschi, Initiative (b23) 2019; 189
Zhang, Liu, An, Gao, Shen (b35) 2017; 21
Wang, Beg, Ratnanather, Ceritoglu, Younes, Morris, Csernansky, Miller (b29) 2007; 26
Lian, Liu, Wang, Shen (b20) 2019
Hett, Ta, Manjón, Coupé, Initiative (b26) 2018; 70
Jagust (b4) 2013; 77
Kendall (b54) 1938; 30
Abuhmed, El-Sappagh, Alonso (b9) 2021; 213
Zhou, He, Zhang, Shen, Chen (b46) 2022
Frisoni, Fox, Jack, Scheltens, Thompson (b15) 2010; 6
Parisot, Ktena, Ferrante, Lee, Guerrero, Glocker, Rueckert (b44) 2018; 48
D. Jin, J. Xu, K. Zhao, F. Hu, Z. Yang, B. Liu, T. Jiang, Y. Liu, Attention-based 3D Convolutional Network for Alzheimer’s Disease Diagnosis and Biomarkers Exploration, in: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019, pp. 1047–1051.
Du, Schuff, Amend, Laakso, Hsu, Jagust, Yaffe, Kramer, Reed, Norman (b69) 2001; 71
Qiu, Joshi, Miller, Xue, Zhou, Karjadi, Chang, Joshi, Dwyer, Zhu (b37) 2020; 143
Chen, Wang, Lai, Zhang, Feng, Huang (b13) 2022; 78
Liu, Yadav, Fernandez-Granda, Razavian (b22) 2019
Aggleton (b71) 1992
Liu, Li, Yan, Wang, Ma, Shen, Xu, Initiative (b8) 2020; 208
Grandini, Bagli, Visani (b63) 2020
Bäckström, Nazari, Gu, Jakola (b18) 2018
Sokolova, Lapalme (b62) 2009; 45
Poloni, Ferrari (b66) 2022; 214
Sørensen, Igel, Liv Hansen, Osler, Lauritzen, Rostrup, Nielsen, Alzheimer’s Disease Neuroimaging Initiative, the Australian Imaging Biomarkers, Lifestyle Flagship Study of Ageing (b30) 2016; 37
Fung, Guan, Kumar, Wu, Fiterau (b50) 2019
Routier, Burgos, Guillon, Samper-González, Wen, Bottani, Marcoux, Bacci, Fontanella, Jacquemont, Wild, Gori, Guyot, Lu, Díaz, Thibeau-Sutre, Moreau, Teichmann, Habert, Durrleman, Colliot (b51) 2019
Scahill, Schott, Stevens, Rossor, Fox (b73) 2002; 99
Jack Jr., Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, L. Whitwell, Ward (b48) 2008; 27
Alvi, Siuly, Wang, Wang, Whittaker (b12) 2022; 248
Longhe (b6) 2020; 16
Cao, Liu, Yang, Zhao, Huang, Zhang, Zaiane (b17) 2017; 91
Arco, Ramírez, Górriz, Ruz, Initiative (b21) 2021; 185
A.A. Valliani, A. Soni, Deep Residual Nets for Improved Alzheimer’s Diagnosis, in: Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics, 2017.
Brand, Nichols, Wang, Shen, Huang (b68) 2020; 39
Hu, Peng, Zhu, Gan, Zhu, Ma, Wu (b11) 2021; 40
Rolls, Huang, Lin, Feng, Joliot (b53) 2020; 206
Convit, De Asis, De Leon, Tarshish, De Santi, Rusinek (b72) 2000; 21
Chung (10.1016/j.knosys.2023.110546_b59) 2014
Gonuguntla (10.1016/j.knosys.2023.110546_b40) 2022
10.1016/j.knosys.2023.110546_b47
Aggleton (10.1016/j.knosys.2023.110546_b71) 1992
Ye (10.1016/j.knosys.2023.110546_b56) 2020
Liu (10.1016/j.knosys.2023.110546_b38) 2018; 43
Payan (10.1016/j.knosys.2023.110546_b49) 2015
Kendall (10.1016/j.knosys.2023.110546_b54) 1938; 30
Islam (10.1016/j.knosys.2023.110546_b33) 2018; 5
Lian (10.1016/j.knosys.2023.110546_b24) 2018; 42
Liu (10.1016/j.knosys.2023.110546_b8) 2020; 208
Sørensen (10.1016/j.knosys.2023.110546_b30) 2016; 37
Korolev (10.1016/j.knosys.2023.110546_b41) 2017
Zhao (10.1016/j.knosys.2023.110546_b61) 2020; 25
Jack Jr. (10.1016/j.knosys.2023.110546_b48) 2008; 27
Cao (10.1016/j.knosys.2023.110546_b17) 2017; 91
Klöppel (10.1016/j.knosys.2023.110546_b28) 2008; 131
Lian (10.1016/j.knosys.2023.110546_b36) 2020
Tiwari (10.1016/j.knosys.2023.110546_b1) 2019; 14
Sokolova (10.1016/j.knosys.2023.110546_b62) 2009; 45
Rashid (10.1016/j.knosys.2023.110546_b34) 2022
10.1016/j.knosys.2023.110546_b32
Poloni (10.1016/j.knosys.2023.110546_b66) 2022; 214
Zhu (10.1016/j.knosys.2023.110546_b45) 2022; 77
Zhou (10.1016/j.knosys.2023.110546_b46) 2022
Parisot (10.1016/j.knosys.2023.110546_b44) 2018; 48
Du (10.1016/j.knosys.2023.110546_b69) 2001; 71
Pereira (10.1016/j.knosys.2023.110546_b65) 2020
Liu (10.1016/j.knosys.2023.110546_b22) 2019
Zhu (10.1016/j.knosys.2023.110546_b25) 2021; 40
Wen (10.1016/j.knosys.2023.110546_b7) 2020; 63
Lei (10.1016/j.knosys.2023.110546_b14) 2022
Zhu (10.1016/j.knosys.2023.110546_b3) 2015
Rolls (10.1016/j.knosys.2023.110546_b53) 2020; 206
Wang (10.1016/j.knosys.2023.110546_b29) 2007; 26
Fischl (10.1016/j.knosys.2023.110546_b52) 2012; 62
Chen (10.1016/j.knosys.2023.110546_b13) 2022; 78
10.1016/j.knosys.2023.110546_b64
Abuhmed (10.1016/j.knosys.2023.110546_b9) 2021; 213
Ning (10.1016/j.knosys.2023.110546_b55) 2021; 40
Longhe (10.1016/j.knosys.2023.110546_b6) 2020; 16
Alvi (10.1016/j.knosys.2023.110546_b12) 2022; 248
Jagust (10.1016/j.knosys.2023.110546_b4) 2013; 77
Grandini (10.1016/j.knosys.2023.110546_b63) 2020
Hu (10.1016/j.knosys.2023.110546_b11) 2021; 40
Liu (10.1016/j.knosys.2023.110546_b43) 2022; 238
Brand (10.1016/j.knosys.2023.110546_b68) 2020; 39
Convit (10.1016/j.knosys.2023.110546_b72) 2000; 21
Roe (10.1016/j.knosys.2023.110546_b74) 2021; 12
Liu (10.1016/j.knosys.2023.110546_b19) 2018; 22
Frisoni (10.1016/j.knosys.2023.110546_b15) 2010; 6
Zhang (10.1016/j.knosys.2023.110546_b42) 2021
Ahmed (10.1016/j.knosys.2023.110546_b31) 2015; 44
Habib (10.1016/j.knosys.2023.110546_b5) 2020; 23
Vaswani (10.1016/j.knosys.2023.110546_b57) 2017; 30
Scahill (10.1016/j.knosys.2023.110546_b73) 2002; 99
Salvatore (10.1016/j.knosys.2023.110546_b16) 2015; 9
Lian (10.1016/j.knosys.2023.110546_b20) 2019
Hett (10.1016/j.knosys.2023.110546_b26) 2018; 70
Wang (10.1016/j.knosys.2023.110546_b39) 2019; 53
Kingma (10.1016/j.knosys.2023.110546_b60) 2014
10.1016/j.knosys.2023.110546_b58
Spasov (10.1016/j.knosys.2023.110546_b23) 2019; 189
Qiu (10.1016/j.knosys.2023.110546_b37) 2020; 143
Plocharski (10.1016/j.knosys.2023.110546_b27) 2016; 133
Zhan (10.1016/j.knosys.2023.110546_b2) 2015; 7
Poloni (10.1016/j.knosys.2023.110546_b67) 2021; 419
Bäckström (10.1016/j.knosys.2023.110546_b18) 2018
Pennanen (10.1016/j.knosys.2023.110546_b70) 2004; 25
Fung (10.1016/j.knosys.2023.110546_b50) 2019
Routier (10.1016/j.knosys.2023.110546_b51) 2019
Zhang (10.1016/j.knosys.2023.110546_b35) 2017; 21
Pan (10.1016/j.knosys.2023.110546_b10) 2020; 40
Arco (10.1016/j.knosys.2023.110546_b21) 2021; 185
References_xml – volume: 99
  start-page: 4703
  year: 2002
  end-page: 4707
  ident: b73
  article-title: Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI
  publication-title: Proc. Natl. Acad. Sci.
– reference: A.A. Valliani, A. Soni, Deep Residual Nets for Improved Alzheimer’s Diagnosis, in: Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics, 2017.
– volume: 208
  year: 2020
  ident: b8
  article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease
  publication-title: Neuroimage
– year: 2022
  ident: b40
  article-title: Brain signatures based on structural MRI: Classification for MCI, PMCI, and AD
  publication-title: Human Brain Mapp.
– year: 2019
  ident: b50
  article-title: Alzheimer’s disease brain MRI classification: Challenges and insights
– volume: 40
  start-page: 2354
  year: 2021
  end-page: 2366
  ident: b25
  article-title: Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI
  publication-title: IEEE Trans. Med. Imaging
– volume: 26
  start-page: 462
  year: 2007
  end-page: 470
  ident: b29
  article-title: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type
  publication-title: IEEE Trans. Med. Imaging
– start-page: 149
  year: 2018
  end-page: 153
  ident: b18
  article-title: An efficient 3D deep convolutional network for Alzheimer’s disease diagnosis using MR images
  publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
– volume: 16
  start-page: 391
  year: 2020
  end-page: 460
  ident: b6
  article-title: Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s Dement.
– volume: 5
  start-page: 1
  year: 2018
  end-page: 14
  ident: b33
  article-title: Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks
  publication-title: Brain Inform.
– start-page: 158
  year: 2019
  end-page: 167
  ident: b20
  article-title: End-to-end dementia status prediction from brain MRI using multi-task weakly-supervised attention network
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 23
  start-page: 701
  year: 2020
  end-page: 706
  ident: b5
  article-title: Disease-associated astrocytes in Alzheimer’s disease and aging
  publication-title: Nature Neurosci.
– start-page: 438
  year: 2020
  end-page: 444
  ident: b65
  article-title: An extended-2D CNN for multiclass Alzheimer’s disease diagnosis through structural MRI
  publication-title: Medical Imaging 2020: Computer-Aided Diagnosis, Vol. 11314
– year: 2022
  ident: b34
  article-title: Biceph-Net: A robust and lightweight framework for the diagnosis of Alzheimer’s disease using 2D-MRI scans and deep similarity learning
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: b28
  article-title: Automatic classification of MR scans in Alzheimer’s disease
  publication-title: Brain
– year: 2019
  ident: b51
  article-title: Clinica: an open source software platform for reproducible clinical neuroscience studies
– volume: 77
  start-page: 219
  year: 2013
  end-page: 234
  ident: b4
  article-title: Vulnerable neural systems and the borderland of brain aging and neurodegeneration
  publication-title: Neuron
– volume: 7
  start-page: 48
  year: 2015
  ident: b2
  article-title: Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease
  publication-title: Front. Aging Neurosci.
– volume: 91
  start-page: 21
  year: 2017
  end-page: 37
  ident: b17
  article-title: Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures
  publication-title: Comput. Biol. Med.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
– volume: 189
  start-page: 276
  year: 2019
  end-page: 287
  ident: b23
  article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease
  publication-title: Neuroimage
– volume: 48
  start-page: 117
  year: 2018
  end-page: 130
  ident: b44
  article-title: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease
  publication-title: Med. Image Anal.
– year: 2022
  ident: b14
  article-title: Longitudinal study of early mild cognitive impairment via similarity-constrained group learning and self-attention based SBi-LSTM
  publication-title: Knowl.-Based Syst.
– volume: 143
  start-page: 1920
  year: 2020
  end-page: 1933
  ident: b37
  article-title: Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification
  publication-title: Brain
– volume: 214
  year: 2022
  ident: b66
  article-title: Automated detection, selection and classification of hippocampal landmark points for the diagnosis of Alzheimer’s disease
  publication-title: Comput. Methods Programs Biomed.
– volume: 30
  start-page: 81
  year: 1938
  end-page: 93
  ident: b54
  article-title: A new measure of rank correlation
  publication-title: Biometrika
– volume: 6
  start-page: 67
  year: 2010
  end-page: 77
  ident: b15
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nat. Rev. Neurol.
– volume: 21
  start-page: 1607
  year: 2017
  end-page: 1616
  ident: b35
  article-title: Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 238
  year: 2022
  ident: b43
  article-title: Diagnosis of Alzheimer’s disease via an attention-based multi-scale convolutional neural network
  publication-title: Knowl.-Based Syst.
– volume: 30
  year: 2017
  ident: b57
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 649
  year: 2020
  end-page: 665
  ident: b56
  article-title: Attention-driven dynamic graph convolutional network for multi-label image recognition
  publication-title: European Conference on Computer Vision
– volume: 185
  year: 2021
  ident: b21
  article-title: Data fusion based on searchlight analysis for the prediction of Alzheimer’s disease
  publication-title: Expert Syst. Appl.
– year: 2014
  ident: b59
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– volume: 53
  start-page: 111
  year: 2019
  end-page: 122
  ident: b39
  article-title: Multi-task exclusive relationship learning for Alzheimer’s disease progression prediction with longitudinal data
  publication-title: Med. Image Anal.
– volume: 419
  start-page: 126
  year: 2021
  end-page: 135
  ident: b67
  article-title: Brain MR image classification for Alzheimer’s disease diagnosis using structural hippocampal asymmetrical attributes from directional 3-D log-gabor filter responses
  publication-title: Neurocomputing
– volume: 25
  start-page: 303
  year: 2004
  end-page: 310
  ident: b70
  article-title: Hippocampus and entorhinal cortex in mild cognitive impairment and early AD
  publication-title: Neurobiol. Aging
– volume: 9
  start-page: 307
  year: 2015
  ident: b16
  article-title: Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer’s disease: a machine learning approach
  publication-title: Front. Neurosci.
– volume: 42
  start-page: 880
  year: 2018
  end-page: 893
  ident: b24
  article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 133
  start-page: 35
  year: 2016
  end-page: 44
  ident: b27
  article-title: Extraction of sulcal medial surface and classification of Alzheimer’s disease using sulcal features
  publication-title: Comput. Methods Programs Biomed.
– volume: 12
  start-page: 1
  year: 2021
  end-page: 11
  ident: b74
  article-title: Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s disease
  publication-title: Nature Commun.
– reference: D. Jin, J. Xu, K. Zhao, F. Hu, Z. Yang, B. Liu, T. Jiang, Y. Liu, Attention-based 3D Convolutional Network for Alzheimer’s Disease Diagnosis and Biomarkers Exploration, in: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019, pp. 1047–1051.
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: b52
  article-title: FreeSurfer
  publication-title: NeuroImage
– volume: 21
  start-page: 19
  year: 2000
  end-page: 26
  ident: b72
  article-title: Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer’s disease
  publication-title: Neurobiol. Aging
– year: 2020
  ident: b63
  article-title: Metrics for multi-class classification: an overview
– volume: 14
  start-page: 5541
  year: 2019
  ident: b1
  article-title: Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics
  publication-title: Int. J. Nanomedicine
– start-page: 835
  year: 2017
  end-page: 838
  ident: b41
  article-title: Residual and plain convolutional neural networks for 3D brain MRI classification
  publication-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)
– volume: 22
  start-page: 1476
  year: 2018
  end-page: 1485
  ident: b19
  article-title: Anatomical landmark based deep feature representation for MR images in brain disease diagnosis
  publication-title: IEEE J. Biomed. Health Inf.
– year: 2020
  ident: b36
  article-title: Attention-guided hybrid network for dementia diagnosis with structural MR images
  publication-title: IEEE Trans. Cybern.
– volume: 71
  start-page: 441
  year: 2001
  end-page: 447
  ident: b69
  article-title: Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease
  publication-title: J. Neurol. Neurosurg. Psychiatry
– year: 2014
  ident: b60
  article-title: Adam: A method for stochastic optimization
– volume: 25
  start-page: 711
  year: 2020
  end-page: 719
  ident: b61
  article-title: Prediction of Alzheimer’s disease progression with multi-information generative adversarial network
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 248
  year: 2022
  ident: b12
  article-title: A deep learning based framework for diagnosis of mild cognitive impairment
  publication-title: Knowl.-Based Syst.
– year: 2019
  ident: b22
  article-title: On the design of convolutional neural networks for automatic detection of Alzheimer’s disease
  publication-title: ML4H@NeurIPS
– volume: 37
  start-page: 1148
  year: 2016
  end-page: 1161
  ident: b30
  article-title: Early detection of Alzheimer’s disease using M RI hippocampal texture
  publication-title: Human Brain Mapp.
– volume: 206
  year: 2020
  ident: b53
  article-title: Automated anatomical labelling atlas 3
  publication-title: Neuroimage
– volume: 213
  year: 2021
  ident: b9
  article-title: Robust hybrid deep learning models for Alzheimer’s progression detection
  publication-title: Knowl.-Based Syst.
– volume: 77
  start-page: 53
  year: 2022
  end-page: 61
  ident: b45
  article-title: Interpretable learning based dynamic graph convolutional networks for Alzheimer’s disease analysis
  publication-title: Inf. Fusion
– volume: 40
  start-page: 1632
  year: 2021
  end-page: 1645
  ident: b55
  article-title: Relation-induced multi-modal shared representation learning for Alzheimer’s disease diagnosis
  publication-title: IEEE Trans. Med. Imaging
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: b48
  article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging: Off. J. Int. Soc. Magn. Reson. Med.
– start-page: 255
  year: 2015
  end-page: 262
  ident: b3
  article-title: Multi-view classification for identification of Alzheimer’s disease
  publication-title: International Workshop on Machine Learning in Medical Imaging
– volume: 40
  start-page: 3843
  year: 2021
  end-page: 3855
  ident: b11
  article-title: Multi-band brain network analysis for functional neuroimaging biomarker identification
  publication-title: IEEE Trans. Med. Imaging
– volume: 63
  year: 2020
  ident: b7
  article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation
  publication-title: Med. Image Anal.
– year: 2015
  ident: b49
  article-title: Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks
– volume: 44
  start-page: 13
  year: 2015
  end-page: 25
  ident: b31
  article-title: Alzheimer’s disease diagnosis on structural MR images using circular harmonic functions descriptors on hippocampus and posterior cingulate cortex
  publication-title: Comput. Med. Imaging Graph.
– reference: K. Li, Y. Zhang, K. Li, Y. Li, Y. Fu, Visual semantic reasoning for image-text matching, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 4654–4662.
– start-page: 1
  year: 2022
  end-page: 5
  ident: b46
  article-title: Interpretable graph convolutional network of multi-modality brain imaging for Alzheimer’s disease diagnosis
  publication-title: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)
– year: 1992
  ident: b71
  article-title: The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction
– volume: 40
  start-page: 81
  year: 2020
  end-page: 92
  ident: b10
  article-title: Multi-view separable pyramid network for AD prediction at MCI stage by 18F-FDG brain PET imaging
  publication-title: IEEE Trans. Med. Imaging
– volume: 39
  start-page: 1845
  year: 2020
  ident: b68
  article-title: Joint multi-modal longitudinal regression and classification for Alzheimer’s disease prediction
  publication-title: IEEE Trans. Med. Imaging
– volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  ident: b62
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manage.
– volume: 70
  start-page: 8
  year: 2018
  end-page: 16
  ident: b26
  article-title: Adaptive fusion of texture-based grading for Alzheimer’s disease classification
  publication-title: Comput. Med. Imaging Graph.
– year: 2021
  ident: b42
  article-title: An explainable 3D residual self-attention deep neural network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 43
  start-page: 157
  year: 2018
  end-page: 168
  ident: b38
  article-title: Landmark-based deep multi-instance learning for brain disease diagnosis
  publication-title: Med. Image Anal.
– volume: 78
  year: 2022
  ident: b13
  article-title: Structure-constrained combination-based nonlinear association analysis between incomplete multimodal imaging and genetic data for biomarker detection of neurodegenerative diseases
  publication-title: Med. Image Anal.
– year: 2014
  ident: 10.1016/j.knosys.2023.110546_b60
– volume: 40
  start-page: 81
  issue: 1
  year: 2020
  ident: 10.1016/j.knosys.2023.110546_b10
  article-title: Multi-view separable pyramid network for AD prediction at MCI stage by 18F-FDG brain PET imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3022591
– volume: 25
  start-page: 711
  issue: 3
  year: 2020
  ident: 10.1016/j.knosys.2023.110546_b61
  article-title: Prediction of Alzheimer’s disease progression with multi-information generative adversarial network
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2020.3006925
– volume: 26
  start-page: 462
  issue: 4
  year: 2007
  ident: 10.1016/j.knosys.2023.110546_b29
  article-title: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.887380
– volume: 185
  year: 2021
  ident: 10.1016/j.knosys.2023.110546_b21
  article-title: Data fusion based on searchlight analysis for the prediction of Alzheimer’s disease
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115549
– year: 2022
  ident: 10.1016/j.knosys.2023.110546_b14
  article-title: Longitudinal study of early mild cognitive impairment via similarity-constrained group learning and self-attention based SBi-LSTM
  publication-title: Knowl.-Based Syst.
– volume: 25
  start-page: 303
  issue: 3
  year: 2004
  ident: 10.1016/j.knosys.2023.110546_b70
  article-title: Hippocampus and entorhinal cortex in mild cognitive impairment and early AD
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(03)00084-8
– volume: 5
  start-page: 1
  issue: 2
  year: 2018
  ident: 10.1016/j.knosys.2023.110546_b33
  article-title: Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks
  publication-title: Brain Inform.
  doi: 10.1186/s40708-018-0080-3
– volume: 213
  year: 2021
  ident: 10.1016/j.knosys.2023.110546_b9
  article-title: Robust hybrid deep learning models for Alzheimer’s progression detection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106688
– year: 2019
  ident: 10.1016/j.knosys.2023.110546_b22
  article-title: On the design of convolutional neural networks for automatic detection of Alzheimer’s disease
– year: 2019
  ident: 10.1016/j.knosys.2023.110546_b51
– volume: 44
  start-page: 13
  year: 2015
  ident: 10.1016/j.knosys.2023.110546_b31
  article-title: Alzheimer’s disease diagnosis on structural MR images using circular harmonic functions descriptors on hippocampus and posterior cingulate cortex
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2015.04.007
– volume: 62
  start-page: 774
  year: 2012
  ident: 10.1016/j.knosys.2023.110546_b52
  article-title: FreeSurfer
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 21
  start-page: 1607
  issue: 6
  year: 2017
  ident: 10.1016/j.knosys.2023.110546_b35
  article-title: Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2017.2704614
– ident: 10.1016/j.knosys.2023.110546_b64
  doi: 10.1109/CVPR.2016.90
– volume: 14
  start-page: 5541
  year: 2019
  ident: 10.1016/j.knosys.2023.110546_b1
  article-title: Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S200490
– volume: 208
  year: 2020
  ident: 10.1016/j.knosys.2023.110546_b8
  article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116459
– volume: 70
  start-page: 8
  year: 2018
  ident: 10.1016/j.knosys.2023.110546_b26
  article-title: Adaptive fusion of texture-based grading for Alzheimer’s disease classification
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2018.08.002
– volume: 419
  start-page: 126
  year: 2021
  ident: 10.1016/j.knosys.2023.110546_b67
  article-title: Brain MR image classification for Alzheimer’s disease diagnosis using structural hippocampal asymmetrical attributes from directional 3-D log-gabor filter responses
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.102
– year: 2020
  ident: 10.1016/j.knosys.2023.110546_b36
  article-title: Attention-guided hybrid network for dementia diagnosis with structural MR images
  publication-title: IEEE Trans. Cybern.
– volume: 53
  start-page: 111
  year: 2019
  ident: 10.1016/j.knosys.2023.110546_b39
  article-title: Multi-task exclusive relationship learning for Alzheimer’s disease progression prediction with longitudinal data
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.01.007
– ident: 10.1016/j.knosys.2023.110546_b32
  doi: 10.1145/3107411.3108224
– year: 2022
  ident: 10.1016/j.knosys.2023.110546_b34
  article-title: Biceph-Net: A robust and lightweight framework for the diagnosis of Alzheimer’s disease using 2D-MRI scans and deep similarity learning
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 214
  year: 2022
  ident: 10.1016/j.knosys.2023.110546_b66
  article-title: Automated detection, selection and classification of hippocampal landmark points for the diagnosis of Alzheimer’s disease
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106581
– volume: 143
  start-page: 1920
  issue: 6
  year: 2020
  ident: 10.1016/j.knosys.2023.110546_b37
  article-title: Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification
  publication-title: Brain
  doi: 10.1093/brain/awaa137
– volume: 133
  start-page: 35
  year: 2016
  ident: 10.1016/j.knosys.2023.110546_b27
  article-title: Extraction of sulcal medial surface and classification of Alzheimer’s disease using sulcal features
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.05.009
– year: 2022
  ident: 10.1016/j.knosys.2023.110546_b40
  article-title: Brain signatures based on structural MRI: Classification for MCI, PMCI, and AD
  publication-title: Human Brain Mapp.
  doi: 10.1002/hbm.25820
– volume: 206
  year: 2020
  ident: 10.1016/j.knosys.2023.110546_b53
  article-title: Automated anatomical labelling atlas 3
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116189
– ident: 10.1016/j.knosys.2023.110546_b58
  doi: 10.1109/ICCV.2019.00475
– volume: 9
  start-page: 307
  year: 2015
  ident: 10.1016/j.knosys.2023.110546_b16
  article-title: Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer’s disease: a machine learning approach
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00307
– year: 2021
  ident: 10.1016/j.knosys.2023.110546_b42
  article-title: An explainable 3D residual self-attention deep neural network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI
  publication-title: IEEE J. Biomed. Health Inf.
– ident: 10.1016/j.knosys.2023.110546_b47
  doi: 10.1109/ISBI.2019.8759455
– volume: 248
  year: 2022
  ident: 10.1016/j.knosys.2023.110546_b12
  article-title: A deep learning based framework for diagnosis of mild cognitive impairment
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108815
– volume: 39
  start-page: 1845
  issue: 6
  year: 2020
  ident: 10.1016/j.knosys.2023.110546_b68
  article-title: Joint multi-modal longitudinal regression and classification for Alzheimer’s disease prediction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2958943
– volume: 131
  start-page: 681
  issue: 3
  year: 2008
  ident: 10.1016/j.knosys.2023.110546_b28
  article-title: Automatic classification of MR scans in Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 43
  start-page: 157
  year: 2018
  ident: 10.1016/j.knosys.2023.110546_b38
  article-title: Landmark-based deep multi-instance learning for brain disease diagnosis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.10.005
– start-page: 438
  year: 2020
  ident: 10.1016/j.knosys.2023.110546_b65
  article-title: An extended-2D CNN for multiclass Alzheimer’s disease diagnosis through structural MRI
– year: 2020
  ident: 10.1016/j.knosys.2023.110546_b63
– year: 1992
  ident: 10.1016/j.knosys.2023.110546_b71
– start-page: 149
  year: 2018
  ident: 10.1016/j.knosys.2023.110546_b18
  article-title: An efficient 3D deep convolutional network for Alzheimer’s disease diagnosis using MR images
– start-page: 158
  year: 2019
  ident: 10.1016/j.knosys.2023.110546_b20
  article-title: End-to-end dementia status prediction from brain MRI using multi-task weakly-supervised attention network
– volume: 71
  start-page: 441
  issue: 4
  year: 2001
  ident: 10.1016/j.knosys.2023.110546_b69
  article-title: Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.71.4.441
– volume: 21
  start-page: 19
  issue: 1
  year: 2000
  ident: 10.1016/j.knosys.2023.110546_b72
  article-title: Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer’s disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(99)00107-4
– volume: 77
  start-page: 219
  issue: 2
  year: 2013
  ident: 10.1016/j.knosys.2023.110546_b4
  article-title: Vulnerable neural systems and the borderland of brain aging and neurodegeneration
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.01.002
– volume: 63
  year: 2020
  ident: 10.1016/j.knosys.2023.110546_b7
  article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101694
– volume: 23
  start-page: 701
  issue: 6
  year: 2020
  ident: 10.1016/j.knosys.2023.110546_b5
  article-title: Disease-associated astrocytes in Alzheimer’s disease and aging
  publication-title: Nature Neurosci.
  doi: 10.1038/s41593-020-0624-8
– volume: 16
  start-page: 391
  year: 2020
  ident: 10.1016/j.knosys.2023.110546_b6
  article-title: Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s Dement.
– start-page: 255
  year: 2015
  ident: 10.1016/j.knosys.2023.110546_b3
  article-title: Multi-view classification for identification of Alzheimer’s disease
– volume: 48
  start-page: 117
  year: 2018
  ident: 10.1016/j.knosys.2023.110546_b44
  article-title: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.06.001
– year: 2015
  ident: 10.1016/j.knosys.2023.110546_b49
– volume: 40
  start-page: 1632
  year: 2021
  ident: 10.1016/j.knosys.2023.110546_b55
  article-title: Relation-induced multi-modal shared representation learning for Alzheimer’s disease diagnosis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3063150
– volume: 27
  start-page: 685
  issue: 4
  year: 2008
  ident: 10.1016/j.knosys.2023.110546_b48
  article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging: Off. J. Int. Soc. Magn. Reson. Med.
  doi: 10.1002/jmri.21049
– volume: 30
  year: 2017
  ident: 10.1016/j.knosys.2023.110546_b57
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 40
  start-page: 2354
  issue: 9
  year: 2021
  ident: 10.1016/j.knosys.2023.110546_b25
  article-title: Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3077079
– volume: 30
  start-page: 81
  issue: 1/2
  year: 1938
  ident: 10.1016/j.knosys.2023.110546_b54
  article-title: A new measure of rank correlation
  publication-title: Biometrika
  doi: 10.2307/2332226
– volume: 78
  year: 2022
  ident: 10.1016/j.knosys.2023.110546_b13
  article-title: Structure-constrained combination-based nonlinear association analysis between incomplete multimodal imaging and genetic data for biomarker detection of neurodegenerative diseases
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102419
– volume: 6
  start-page: 67
  issue: 2
  year: 2010
  ident: 10.1016/j.knosys.2023.110546_b15
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2009.215
– volume: 40
  start-page: 3843
  issue: 12
  year: 2021
  ident: 10.1016/j.knosys.2023.110546_b11
  article-title: Multi-band brain network analysis for functional neuroimaging biomarker identification
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3099641
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.knosys.2023.110546_b74
  article-title: Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s disease
  publication-title: Nature Commun.
  doi: 10.1038/s41467-021-21057-y
– volume: 91
  start-page: 21
  year: 2017
  ident: 10.1016/j.knosys.2023.110546_b17
  article-title: Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.10.002
– volume: 77
  start-page: 53
  year: 2022
  ident: 10.1016/j.knosys.2023.110546_b45
  article-title: Interpretable learning based dynamic graph convolutional networks for Alzheimer’s disease analysis
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.07.013
– volume: 238
  year: 2022
  ident: 10.1016/j.knosys.2023.110546_b43
  article-title: Diagnosis of Alzheimer’s disease via an attention-based multi-scale convolutional neural network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107942
– start-page: 649
  year: 2020
  ident: 10.1016/j.knosys.2023.110546_b56
  article-title: Attention-driven dynamic graph convolutional network for multi-label image recognition
– volume: 7
  start-page: 48
  year: 2015
  ident: 10.1016/j.knosys.2023.110546_b2
  article-title: Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2015.00048
– volume: 42
  start-page: 880
  issue: 4
  year: 2018
  ident: 10.1016/j.knosys.2023.110546_b24
  article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2889096
– year: 2014
  ident: 10.1016/j.knosys.2023.110546_b59
– volume: 189
  start-page: 276
  year: 2019
  ident: 10.1016/j.knosys.2023.110546_b23
  article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.01.031
– volume: 37
  start-page: 1148
  issue: 3
  year: 2016
  ident: 10.1016/j.knosys.2023.110546_b30
  article-title: Early detection of Alzheimer’s disease using M RI hippocampal texture
  publication-title: Human Brain Mapp.
  doi: 10.1002/hbm.23091
– volume: 22
  start-page: 1476
  issue: 5
  year: 2018
  ident: 10.1016/j.knosys.2023.110546_b19
  article-title: Anatomical landmark based deep feature representation for MR images in brain disease diagnosis
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2018.2791863
– start-page: 1
  year: 2022
  ident: 10.1016/j.knosys.2023.110546_b46
  article-title: Interpretable graph convolutional network of multi-modality brain imaging for Alzheimer’s disease diagnosis
– start-page: 835
  year: 2017
  ident: 10.1016/j.knosys.2023.110546_b41
  article-title: Residual and plain convolutional neural networks for 3D brain MRI classification
– volume: 45
  start-page: 427
  issue: 4
  year: 2009
  ident: 10.1016/j.knosys.2023.110546_b62
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2009.03.002
– volume: 99
  start-page: 4703
  issue: 7
  year: 2002
  ident: 10.1016/j.knosys.2023.110546_b73
  article-title: Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.052587399
– year: 2019
  ident: 10.1016/j.knosys.2023.110546_b50
SSID ssj0002218
Score 2.5008848
Snippet Structural magnetic resonance imaging (sMRI) is widely applied in Alzheimer’s disease (AD) diagnosis tasks by reflecting structural anomalies of the brain....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110546
SubjectTerms Alzheimer’s disease
Deep learning
Graph convolutional network
Medical image processing
Structural magnetic resonance imaging
Title Multi-relation graph convolutional network for Alzheimer’s disease diagnosis using structural MRI
URI https://dx.doi.org/10.1016/j.knosys.2023.110546
Volume 270
WOSCitedRecordID wos000986061200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTQ-9NH3SNG3RobegYkuyZR2XkJKkbShtCnszsiwTJ4sT4iSkOeVv5O_1l3T0sHbTLX1BWTCLsaxl5tvR6NM8EHotRV03tcpIKgwj3OiUKMEo4anJEybzjJvaNZsQe3vFdCo_jkbnQy7MxUx0XXF5KU_-q6rhHijbps7-hbrjS-EGfAelwxXUDtc_UrxLqSWnIchtw1WkdsHlYVbQSedjv12I4WR2dWBa20MlhD3Ifji1scSsjcNr-43z3vMOttisK9Tx4dPOol_7bqDmiF0W61AgOvrrkZbebSMYtx2VOm3V8YFqI_8aWqy8t6dO89ADbxvh2bDOBpqC2pYRhM5piuX8mUBCJkQkoeSs8Sa4EODz80Qu2mjqu4ss2XtPPRy-OQJhfLXV1ymziQ0Z_6G8tluwP9vp7Gyw7UrscfMdtEJFJosxWpnsbE134xJOqSOG488bci5dYODyXD_3aRb8lP0H6H7YYOCJB8ZDNDLdI7Q6NO_AwZY_Rvo2TrDDCb6FExxwggEnOOLk2_VNjwNCcEQIdgjBc4RgQMgT9OXt1v7mNgkdN4iGreMZ0WDSmwq28FJoqmVVG6GNTOuk4rLJhc7BYWyKrFGKSkObhtFaJZzpPM0rxXPDnqJxd9yZZwhnEj6ZYhzeyWXCqgx2CjrLNXiQtaL5GmKDzEodytHbriizcog7PCy9pEsr6dJLeg2ROOrEl2P5zfNiUEcZXErvKpaAoF-OfP7PI9fRvfkf4AUag-DNS3RXX5y1_emrALXvm5egKg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-relation+graph+convolutional+network+for+Alzheimer%E2%80%99s+disease+diagnosis+using+structural+MRI&rft.jtitle=Knowledge-based+systems&rft.au=Zhang%2C+Jin&rft.au=He%2C+Xiaohai&rft.au=Qing%2C+Linbo&rft.au=Chen%2C+Xiang&rft.date=2023-06-21&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=270&rft_id=info:doi/10.1016%2Fj.knosys.2023.110546&rft.externalDocID=S0950705123002964
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon