Multi-relation graph convolutional network for Alzheimer’s disease diagnosis using structural MRI
Structural magnetic resonance imaging (sMRI) is widely applied in Alzheimer’s disease (AD) diagnosis tasks by reflecting structural anomalies of the brain. Currently, most existing methods solely focus on pathological changes in disease-affected brain regions and ignore their potential associations...
Saved in:
| Published in: | Knowledge-based systems Vol. 270; p. 110546 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
21.06.2023
|
| Subjects: | |
| ISSN: | 0950-7051, 1872-7409 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Structural magnetic resonance imaging (sMRI) is widely applied in Alzheimer’s disease (AD) diagnosis tasks by reflecting structural anomalies of the brain. Currently, most existing methods solely focus on pathological changes in disease-affected brain regions and ignore their potential associations and interactions, which provide valuable information for brain investigation. Meanwhile, how to construct effective structural brain graphs composed of nodes and edges remains appealing. To tackle these issues, in this paper, we propose a novel multi-relation reasoning network (MRN) to learn multi-relation-aware representations of brain regions in sMRI data for AD diagnosis, including spatial correlations and topological information. We frame distinguishing different disease statuses as the graph classification problem. Each scan is regarded as a graph, where nodes represent brain regions with abnormal changes selected by group-wise comparison, and edges denote semantic or spatial relations between them. Specifically, the dilated convolution module learns informative features to provide discriminative node representations for constructing brain graphs. Multi-type inter-region relations are then captured by the local reasoning module based on the graph convolutional network to provide a reliable basis for AD diagnosis, including geometric correlations and semantic interactions. Moreover, global reasoning is employed on the learned graph structure to achieve information aggregation and gradually generate the subject-level representation for AD diagnosis. We evaluate the effectiveness of our proposed method on the ADNI dataset, and extensive experiments demonstrate that our MRN achieves competitive performance for multiple AD-related classification tasks, compared to several state-of-the-art methods.
•A novel multi-relation reasoning network for sMRI-based AD diagnosis is proposed.•Brain connectivity graphs are constructed based on disease-related brain regions.•Potential interactions between discriminative brain regions in sMRI are learned.•The diagnosis results achieve promising performance for AD diagnosis tasks. |
|---|---|
| AbstractList | Structural magnetic resonance imaging (sMRI) is widely applied in Alzheimer’s disease (AD) diagnosis tasks by reflecting structural anomalies of the brain. Currently, most existing methods solely focus on pathological changes in disease-affected brain regions and ignore their potential associations and interactions, which provide valuable information for brain investigation. Meanwhile, how to construct effective structural brain graphs composed of nodes and edges remains appealing. To tackle these issues, in this paper, we propose a novel multi-relation reasoning network (MRN) to learn multi-relation-aware representations of brain regions in sMRI data for AD diagnosis, including spatial correlations and topological information. We frame distinguishing different disease statuses as the graph classification problem. Each scan is regarded as a graph, where nodes represent brain regions with abnormal changes selected by group-wise comparison, and edges denote semantic or spatial relations between them. Specifically, the dilated convolution module learns informative features to provide discriminative node representations for constructing brain graphs. Multi-type inter-region relations are then captured by the local reasoning module based on the graph convolutional network to provide a reliable basis for AD diagnosis, including geometric correlations and semantic interactions. Moreover, global reasoning is employed on the learned graph structure to achieve information aggregation and gradually generate the subject-level representation for AD diagnosis. We evaluate the effectiveness of our proposed method on the ADNI dataset, and extensive experiments demonstrate that our MRN achieves competitive performance for multiple AD-related classification tasks, compared to several state-of-the-art methods.
•A novel multi-relation reasoning network for sMRI-based AD diagnosis is proposed.•Brain connectivity graphs are constructed based on disease-related brain regions.•Potential interactions between discriminative brain regions in sMRI are learned.•The diagnosis results achieve promising performance for AD diagnosis tasks. |
| ArticleNumber | 110546 |
| Author | He, Xiaohai Liu, Yan Zhang, Jin Chen, Honggang Qing, Linbo Chen, Xiang |
| Author_xml | – sequence: 1 givenname: Jin surname: Zhang fullname: Zhang, Jin organization: College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, 610065, China – sequence: 2 givenname: Xiaohai orcidid: 0000-0002-2967-2682 surname: He fullname: He, Xiaohai email: hxh@scu.edu.cn organization: College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, 610065, China – sequence: 3 givenname: Linbo surname: Qing fullname: Qing, Linbo organization: College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, 610065, China – sequence: 4 givenname: Xiang orcidid: 0000-0003-4203-4578 surname: Chen fullname: Chen, Xiang organization: Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing, University of Leeds, Leeds, UK – sequence: 5 givenname: Yan surname: Liu fullname: Liu, Yan organization: Department of Neurology, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, 610031, China – sequence: 6 givenname: Honggang surname: Chen fullname: Chen, Honggang organization: College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, 610065, China |
| BookMark | eNqFkM1KAzEUhYNUsK2-gYt5gRlvMtP5cSGU4k-hRRBdh0zmpk07nZQkU6krX8PX80mcWlcudHXgwne45xuQXmMaJOSSQkSBpleraN0Yt3cRAxZHlMIoSU9In-YZC7MEih7pQzGCMIMRPSMD51YAwBjN-0TO29rr0GItvDZNsLBiuwykaXambg8XUQcN-ldj14EyNhjXb0vUG7Sf7x8uqLRD4bBLseg-0C5onW4WgfO2lb61HTx_mp6TUyVqhxc_OSQvd7fPk4dw9ng_nYxnoYwh9aGEBFRJC1pkksmirDCTWNAKyqRQaSZTyJnKR0oIViBTKmaVgCSWKU1LkaQYD8n1sVda45xFxaX237O8FbrmFPhBF1_xoy5-0MWPujo4-QVvrd4Iu_8Puzli2A3babTcSY2NxEpblJ5XRv9d8AWatI0N |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2024_111901 crossref_primary_10_1186_s12880_025_01836_5 crossref_primary_10_1016_j_bspc_2025_108472 crossref_primary_10_3389_fneur_2025_1626922 crossref_primary_10_1038_s41598_024_78712_9 crossref_primary_10_1162_netn_a_00423 crossref_primary_10_3390_brainsci15050523 crossref_primary_10_1007_s13198_024_02377_w crossref_primary_10_1016_j_eswa_2024_125809 crossref_primary_10_1109_TNNLS_2025_3569650 crossref_primary_10_1016_j_engappai_2025_111058 crossref_primary_10_1002_ima_22967 crossref_primary_10_1016_j_cmpb_2025_108954 crossref_primary_10_1155_2024_8862647 crossref_primary_10_3389_fphys_2025_1515881 crossref_primary_10_7717_peerj_cs_2056 crossref_primary_10_1016_j_eswa_2024_124780 crossref_primary_10_1016_j_knosys_2025_113175 crossref_primary_10_1088_1402_4896_add2a6 crossref_primary_10_1016_j_compbiomed_2025_111028 crossref_primary_10_1016_j_media_2024_103211 |
| Cites_doi | 10.1109/TMI.2020.3022591 10.1109/JBHI.2020.3006925 10.1109/TMI.2006.887380 10.1016/j.eswa.2021.115549 10.1016/S0197-4580(03)00084-8 10.1186/s40708-018-0080-3 10.1016/j.knosys.2020.106688 10.1016/j.compmedimag.2015.04.007 10.1016/j.neuroimage.2012.01.021 10.1109/JBHI.2017.2704614 10.1109/CVPR.2016.90 10.2147/IJN.S200490 10.1016/j.neuroimage.2019.116459 10.1016/j.compmedimag.2018.08.002 10.1016/j.neucom.2020.07.102 10.1016/j.media.2019.01.007 10.1145/3107411.3108224 10.1016/j.cmpb.2021.106581 10.1093/brain/awaa137 10.1016/j.cmpb.2016.05.009 10.1002/hbm.25820 10.1016/j.neuroimage.2019.116189 10.1109/ICCV.2019.00475 10.3389/fnins.2015.00307 10.1109/ISBI.2019.8759455 10.1016/j.knosys.2022.108815 10.1109/TMI.2019.2958943 10.1093/brain/awm319 10.1016/j.media.2017.10.005 10.1136/jnnp.71.4.441 10.1016/S0197-4580(99)00107-4 10.1016/j.neuron.2013.01.002 10.1016/j.media.2020.101694 10.1038/s41593-020-0624-8 10.1016/j.media.2018.06.001 10.1109/TMI.2021.3063150 10.1002/jmri.21049 10.1109/TMI.2021.3077079 10.2307/2332226 10.1016/j.media.2022.102419 10.1038/nrneurol.2009.215 10.1109/TMI.2021.3099641 10.1038/s41467-021-21057-y 10.1016/j.compbiomed.2017.10.002 10.1016/j.inffus.2021.07.013 10.1016/j.knosys.2021.107942 10.3389/fnagi.2015.00048 10.1109/TPAMI.2018.2889096 10.1016/j.neuroimage.2019.01.031 10.1002/hbm.23091 10.1109/JBHI.2018.2791863 10.1016/j.ipm.2009.03.002 10.1073/pnas.052587399 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.knosys.2023.110546 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| ExternalDocumentID | 10_1016_j_knosys_2023_110546 S0950705123002964 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ ~HD |
| ID | FETCH-LOGICAL-c306t-c040fb19197c2c9bde7ce91d0b49f67c6082f85faa29e2ff32da043c616ba46e3 |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000986061200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-7051 |
| IngestDate | Sat Nov 29 07:07:30 EST 2025 Tue Nov 18 20:55:39 EST 2025 Fri Feb 23 02:40:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Medical image processing Graph convolutional network Alzheimer’s disease Structural magnetic resonance imaging |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-c040fb19197c2c9bde7ce91d0b49f67c6082f85faa29e2ff32da043c616ba46e3 |
| ORCID | 0000-0002-2967-2682 0000-0003-4203-4578 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_knosys_2023_110546 crossref_primary_10_1016_j_knosys_2023_110546 elsevier_sciencedirect_doi_10_1016_j_knosys_2023_110546 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-21 |
| PublicationDateYYYYMMDD | 2023-06-21 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b57) 2017; 30 Fischl (b52) 2012; 62 Payan, Montana (b49) 2015 Habib, McCabe, Medina, Varshavsky, Kitsberg, Dvir-Szternfeld, Green, Dionne, Nguyen, Marshall (b5) 2020; 23 Korolev, Safiullin, Belyaev, Dodonova (b41) 2017 Zhu, Ma, Yuan, Zhu (b45) 2022; 77 K. Li, Y. Zhang, K. Li, Y. Li, Y. Fu, Visual semantic reasoning for image-text matching, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 4654–4662. Poloni, de Oliveira, Tam, Ferrari, Initiative (b67) 2021; 419 Kingma, Ba (b60) 2014 Pereira, Fantini, Lotufo, Rittner (b65) 2020 Islam, Zhang (b33) 2018; 5 Wen, Thibeau-Sutre, Diaz-Melo, Samper-González, Routier, Bottani, Dormont, Durrleman, Burgos, Colliot (b7) 2020; 63 Liu, Zhang, Nie, Yap, Shen (b19) 2018; 22 Zhu, Suk, Zhu, Thung, Wu, Shen (b3) 2015 Roe, Vidal-Piñeiro, Sørensen, Brandmaier, Düzel, Gonzalez, Kievit, Knights, Kühn, Lindenberger (b74) 2021; 12 Wang, Zhang, Shen, Liu (b39) 2019; 53 Pennanen, Kivipelto, Tuomainen, Hartikainen, Hänninen, Laakso, Hallikainen, Vanhanen, Nissinen, Helkala (b70) 2004; 25 Zhang, Han, Zhu, Sun, Zhang (b42) 2021 Ahmed, Mizotin, Benois-Pineau, Allard, Catheline, Amar, Initiative (b31) 2015; 44 Chung, Gülçehre, Cho, Bengio (b59) 2014 Lian, Liu, Zhang, Shen (b24) 2018; 42 Lian, Liu, Pan, Shen (b36) 2020 Liu, Lu, Pan, Xu, Lan, Luo (b43) 2022; 238 Zhu, Sun, Huang, Han, Zhang (b25) 2021; 40 Salvatore, Cerasa, Battista, Gilardi, Quattrone, Castiglioni (b16) 2015; 9 Ye, He, Peng, Wu, Qiao (b56) 2020 Zhan, Zhou, Wang, Jin, Jahanshad, Prasad, Nir, Leonardo, Ye, Thompson (b2) 2015; 7 Lei, Zhang, Liu, Xu, Yue, Cao, Hu, Yu, Yang, Wang (b14) 2022 Liu, Zhang, Adeli, Shen (b38) 2018; 43 Rashid, Gupta, Gupta, Tanveer (b34) 2022 Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack Jr., Ashburner, Frackowiak (b28) 2008; 131 Gonuguntla, Yang, Guan, Koo, Kim (b40) 2022 Pan, Phan, Adel, Fossati, Gaidon, Wojak, Guedj (b10) 2020; 40 Plocharski, Østergaard, Initiative (b27) 2016; 133 Tiwari, Atluri, Kaushik, Yndart, Nair (b1) 2019; 14 K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778. Zhao, Ma, Jiang, Zeng, Wang, Li (b61) 2020; 25 Ning, Xiao, Feng, Chen, Zhang (b55) 2021; 40 Spasov, Passamonti, Duggento, Lio, Toschi, Initiative (b23) 2019; 189 Zhang, Liu, An, Gao, Shen (b35) 2017; 21 Wang, Beg, Ratnanather, Ceritoglu, Younes, Morris, Csernansky, Miller (b29) 2007; 26 Lian, Liu, Wang, Shen (b20) 2019 Hett, Ta, Manjón, Coupé, Initiative (b26) 2018; 70 Jagust (b4) 2013; 77 Kendall (b54) 1938; 30 Abuhmed, El-Sappagh, Alonso (b9) 2021; 213 Zhou, He, Zhang, Shen, Chen (b46) 2022 Frisoni, Fox, Jack, Scheltens, Thompson (b15) 2010; 6 Parisot, Ktena, Ferrante, Lee, Guerrero, Glocker, Rueckert (b44) 2018; 48 D. Jin, J. Xu, K. Zhao, F. Hu, Z. Yang, B. Liu, T. Jiang, Y. Liu, Attention-based 3D Convolutional Network for Alzheimer’s Disease Diagnosis and Biomarkers Exploration, in: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019, pp. 1047–1051. Du, Schuff, Amend, Laakso, Hsu, Jagust, Yaffe, Kramer, Reed, Norman (b69) 2001; 71 Qiu, Joshi, Miller, Xue, Zhou, Karjadi, Chang, Joshi, Dwyer, Zhu (b37) 2020; 143 Chen, Wang, Lai, Zhang, Feng, Huang (b13) 2022; 78 Liu, Yadav, Fernandez-Granda, Razavian (b22) 2019 Aggleton (b71) 1992 Liu, Li, Yan, Wang, Ma, Shen, Xu, Initiative (b8) 2020; 208 Grandini, Bagli, Visani (b63) 2020 Bäckström, Nazari, Gu, Jakola (b18) 2018 Sokolova, Lapalme (b62) 2009; 45 Poloni, Ferrari (b66) 2022; 214 Sørensen, Igel, Liv Hansen, Osler, Lauritzen, Rostrup, Nielsen, Alzheimer’s Disease Neuroimaging Initiative, the Australian Imaging Biomarkers, Lifestyle Flagship Study of Ageing (b30) 2016; 37 Fung, Guan, Kumar, Wu, Fiterau (b50) 2019 Routier, Burgos, Guillon, Samper-González, Wen, Bottani, Marcoux, Bacci, Fontanella, Jacquemont, Wild, Gori, Guyot, Lu, Díaz, Thibeau-Sutre, Moreau, Teichmann, Habert, Durrleman, Colliot (b51) 2019 Scahill, Schott, Stevens, Rossor, Fox (b73) 2002; 99 Jack Jr., Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, L. Whitwell, Ward (b48) 2008; 27 Alvi, Siuly, Wang, Wang, Whittaker (b12) 2022; 248 Longhe (b6) 2020; 16 Cao, Liu, Yang, Zhao, Huang, Zhang, Zaiane (b17) 2017; 91 Arco, Ramírez, Górriz, Ruz, Initiative (b21) 2021; 185 A.A. Valliani, A. Soni, Deep Residual Nets for Improved Alzheimer’s Diagnosis, in: Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics, 2017. Brand, Nichols, Wang, Shen, Huang (b68) 2020; 39 Hu, Peng, Zhu, Gan, Zhu, Ma, Wu (b11) 2021; 40 Rolls, Huang, Lin, Feng, Joliot (b53) 2020; 206 Convit, De Asis, De Leon, Tarshish, De Santi, Rusinek (b72) 2000; 21 Chung (10.1016/j.knosys.2023.110546_b59) 2014 Gonuguntla (10.1016/j.knosys.2023.110546_b40) 2022 10.1016/j.knosys.2023.110546_b47 Aggleton (10.1016/j.knosys.2023.110546_b71) 1992 Ye (10.1016/j.knosys.2023.110546_b56) 2020 Liu (10.1016/j.knosys.2023.110546_b38) 2018; 43 Payan (10.1016/j.knosys.2023.110546_b49) 2015 Kendall (10.1016/j.knosys.2023.110546_b54) 1938; 30 Islam (10.1016/j.knosys.2023.110546_b33) 2018; 5 Lian (10.1016/j.knosys.2023.110546_b24) 2018; 42 Liu (10.1016/j.knosys.2023.110546_b8) 2020; 208 Sørensen (10.1016/j.knosys.2023.110546_b30) 2016; 37 Korolev (10.1016/j.knosys.2023.110546_b41) 2017 Zhao (10.1016/j.knosys.2023.110546_b61) 2020; 25 Jack Jr. (10.1016/j.knosys.2023.110546_b48) 2008; 27 Cao (10.1016/j.knosys.2023.110546_b17) 2017; 91 Klöppel (10.1016/j.knosys.2023.110546_b28) 2008; 131 Lian (10.1016/j.knosys.2023.110546_b36) 2020 Tiwari (10.1016/j.knosys.2023.110546_b1) 2019; 14 Sokolova (10.1016/j.knosys.2023.110546_b62) 2009; 45 Rashid (10.1016/j.knosys.2023.110546_b34) 2022 10.1016/j.knosys.2023.110546_b32 Poloni (10.1016/j.knosys.2023.110546_b66) 2022; 214 Zhu (10.1016/j.knosys.2023.110546_b45) 2022; 77 Zhou (10.1016/j.knosys.2023.110546_b46) 2022 Parisot (10.1016/j.knosys.2023.110546_b44) 2018; 48 Du (10.1016/j.knosys.2023.110546_b69) 2001; 71 Pereira (10.1016/j.knosys.2023.110546_b65) 2020 Liu (10.1016/j.knosys.2023.110546_b22) 2019 Zhu (10.1016/j.knosys.2023.110546_b25) 2021; 40 Wen (10.1016/j.knosys.2023.110546_b7) 2020; 63 Lei (10.1016/j.knosys.2023.110546_b14) 2022 Zhu (10.1016/j.knosys.2023.110546_b3) 2015 Rolls (10.1016/j.knosys.2023.110546_b53) 2020; 206 Wang (10.1016/j.knosys.2023.110546_b29) 2007; 26 Fischl (10.1016/j.knosys.2023.110546_b52) 2012; 62 Chen (10.1016/j.knosys.2023.110546_b13) 2022; 78 10.1016/j.knosys.2023.110546_b64 Abuhmed (10.1016/j.knosys.2023.110546_b9) 2021; 213 Ning (10.1016/j.knosys.2023.110546_b55) 2021; 40 Longhe (10.1016/j.knosys.2023.110546_b6) 2020; 16 Alvi (10.1016/j.knosys.2023.110546_b12) 2022; 248 Jagust (10.1016/j.knosys.2023.110546_b4) 2013; 77 Grandini (10.1016/j.knosys.2023.110546_b63) 2020 Hu (10.1016/j.knosys.2023.110546_b11) 2021; 40 Liu (10.1016/j.knosys.2023.110546_b43) 2022; 238 Brand (10.1016/j.knosys.2023.110546_b68) 2020; 39 Convit (10.1016/j.knosys.2023.110546_b72) 2000; 21 Roe (10.1016/j.knosys.2023.110546_b74) 2021; 12 Liu (10.1016/j.knosys.2023.110546_b19) 2018; 22 Frisoni (10.1016/j.knosys.2023.110546_b15) 2010; 6 Zhang (10.1016/j.knosys.2023.110546_b42) 2021 Ahmed (10.1016/j.knosys.2023.110546_b31) 2015; 44 Habib (10.1016/j.knosys.2023.110546_b5) 2020; 23 Vaswani (10.1016/j.knosys.2023.110546_b57) 2017; 30 Scahill (10.1016/j.knosys.2023.110546_b73) 2002; 99 Salvatore (10.1016/j.knosys.2023.110546_b16) 2015; 9 Lian (10.1016/j.knosys.2023.110546_b20) 2019 Hett (10.1016/j.knosys.2023.110546_b26) 2018; 70 Wang (10.1016/j.knosys.2023.110546_b39) 2019; 53 Kingma (10.1016/j.knosys.2023.110546_b60) 2014 10.1016/j.knosys.2023.110546_b58 Spasov (10.1016/j.knosys.2023.110546_b23) 2019; 189 Qiu (10.1016/j.knosys.2023.110546_b37) 2020; 143 Plocharski (10.1016/j.knosys.2023.110546_b27) 2016; 133 Zhan (10.1016/j.knosys.2023.110546_b2) 2015; 7 Poloni (10.1016/j.knosys.2023.110546_b67) 2021; 419 Bäckström (10.1016/j.knosys.2023.110546_b18) 2018 Pennanen (10.1016/j.knosys.2023.110546_b70) 2004; 25 Fung (10.1016/j.knosys.2023.110546_b50) 2019 Routier (10.1016/j.knosys.2023.110546_b51) 2019 Zhang (10.1016/j.knosys.2023.110546_b35) 2017; 21 Pan (10.1016/j.knosys.2023.110546_b10) 2020; 40 Arco (10.1016/j.knosys.2023.110546_b21) 2021; 185 |
| References_xml | – volume: 99 start-page: 4703 year: 2002 end-page: 4707 ident: b73 article-title: Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI publication-title: Proc. Natl. Acad. Sci. – reference: A.A. Valliani, A. Soni, Deep Residual Nets for Improved Alzheimer’s Diagnosis, in: Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics, 2017. – volume: 208 year: 2020 ident: b8 article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease publication-title: Neuroimage – year: 2022 ident: b40 article-title: Brain signatures based on structural MRI: Classification for MCI, PMCI, and AD publication-title: Human Brain Mapp. – year: 2019 ident: b50 article-title: Alzheimer’s disease brain MRI classification: Challenges and insights – volume: 40 start-page: 2354 year: 2021 end-page: 2366 ident: b25 article-title: Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI publication-title: IEEE Trans. Med. Imaging – volume: 26 start-page: 462 year: 2007 end-page: 470 ident: b29 article-title: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type publication-title: IEEE Trans. Med. Imaging – start-page: 149 year: 2018 end-page: 153 ident: b18 article-title: An efficient 3D deep convolutional network for Alzheimer’s disease diagnosis using MR images publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) – volume: 16 start-page: 391 year: 2020 end-page: 460 ident: b6 article-title: Alzheimer’s disease facts and figures publication-title: Alzheimer’s Dement. – volume: 5 start-page: 1 year: 2018 end-page: 14 ident: b33 article-title: Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks publication-title: Brain Inform. – start-page: 158 year: 2019 end-page: 167 ident: b20 article-title: End-to-end dementia status prediction from brain MRI using multi-task weakly-supervised attention network publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 23 start-page: 701 year: 2020 end-page: 706 ident: b5 article-title: Disease-associated astrocytes in Alzheimer’s disease and aging publication-title: Nature Neurosci. – start-page: 438 year: 2020 end-page: 444 ident: b65 article-title: An extended-2D CNN for multiclass Alzheimer’s disease diagnosis through structural MRI publication-title: Medical Imaging 2020: Computer-Aided Diagnosis, Vol. 11314 – year: 2022 ident: b34 article-title: Biceph-Net: A robust and lightweight framework for the diagnosis of Alzheimer’s disease using 2D-MRI scans and deep similarity learning publication-title: IEEE J. Biomed. Health Inf. – volume: 131 start-page: 681 year: 2008 end-page: 689 ident: b28 article-title: Automatic classification of MR scans in Alzheimer’s disease publication-title: Brain – year: 2019 ident: b51 article-title: Clinica: an open source software platform for reproducible clinical neuroscience studies – volume: 77 start-page: 219 year: 2013 end-page: 234 ident: b4 article-title: Vulnerable neural systems and the borderland of brain aging and neurodegeneration publication-title: Neuron – volume: 7 start-page: 48 year: 2015 ident: b2 article-title: Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease publication-title: Front. Aging Neurosci. – volume: 91 start-page: 21 year: 2017 end-page: 37 ident: b17 article-title: Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures publication-title: Comput. Biol. Med. – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778. – volume: 189 start-page: 276 year: 2019 end-page: 287 ident: b23 article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease publication-title: Neuroimage – volume: 48 start-page: 117 year: 2018 end-page: 130 ident: b44 article-title: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease publication-title: Med. Image Anal. – year: 2022 ident: b14 article-title: Longitudinal study of early mild cognitive impairment via similarity-constrained group learning and self-attention based SBi-LSTM publication-title: Knowl.-Based Syst. – volume: 143 start-page: 1920 year: 2020 end-page: 1933 ident: b37 article-title: Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification publication-title: Brain – volume: 214 year: 2022 ident: b66 article-title: Automated detection, selection and classification of hippocampal landmark points for the diagnosis of Alzheimer’s disease publication-title: Comput. Methods Programs Biomed. – volume: 30 start-page: 81 year: 1938 end-page: 93 ident: b54 article-title: A new measure of rank correlation publication-title: Biometrika – volume: 6 start-page: 67 year: 2010 end-page: 77 ident: b15 article-title: The clinical use of structural MRI in Alzheimer disease publication-title: Nat. Rev. Neurol. – volume: 21 start-page: 1607 year: 2017 end-page: 1616 ident: b35 article-title: Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images publication-title: IEEE J. Biomed. Health Inf. – volume: 238 year: 2022 ident: b43 article-title: Diagnosis of Alzheimer’s disease via an attention-based multi-scale convolutional neural network publication-title: Knowl.-Based Syst. – volume: 30 year: 2017 ident: b57 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – start-page: 649 year: 2020 end-page: 665 ident: b56 article-title: Attention-driven dynamic graph convolutional network for multi-label image recognition publication-title: European Conference on Computer Vision – volume: 185 year: 2021 ident: b21 article-title: Data fusion based on searchlight analysis for the prediction of Alzheimer’s disease publication-title: Expert Syst. Appl. – year: 2014 ident: b59 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – volume: 53 start-page: 111 year: 2019 end-page: 122 ident: b39 article-title: Multi-task exclusive relationship learning for Alzheimer’s disease progression prediction with longitudinal data publication-title: Med. Image Anal. – volume: 419 start-page: 126 year: 2021 end-page: 135 ident: b67 article-title: Brain MR image classification for Alzheimer’s disease diagnosis using structural hippocampal asymmetrical attributes from directional 3-D log-gabor filter responses publication-title: Neurocomputing – volume: 25 start-page: 303 year: 2004 end-page: 310 ident: b70 article-title: Hippocampus and entorhinal cortex in mild cognitive impairment and early AD publication-title: Neurobiol. Aging – volume: 9 start-page: 307 year: 2015 ident: b16 article-title: Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer’s disease: a machine learning approach publication-title: Front. Neurosci. – volume: 42 start-page: 880 year: 2018 end-page: 893 ident: b24 article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 133 start-page: 35 year: 2016 end-page: 44 ident: b27 article-title: Extraction of sulcal medial surface and classification of Alzheimer’s disease using sulcal features publication-title: Comput. Methods Programs Biomed. – volume: 12 start-page: 1 year: 2021 end-page: 11 ident: b74 article-title: Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s disease publication-title: Nature Commun. – reference: D. Jin, J. Xu, K. Zhao, F. Hu, Z. Yang, B. Liu, T. Jiang, Y. Liu, Attention-based 3D Convolutional Network for Alzheimer’s Disease Diagnosis and Biomarkers Exploration, in: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 2019, pp. 1047–1051. – volume: 62 start-page: 774 year: 2012 end-page: 781 ident: b52 article-title: FreeSurfer publication-title: NeuroImage – volume: 21 start-page: 19 year: 2000 end-page: 26 ident: b72 article-title: Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer’s disease publication-title: Neurobiol. Aging – year: 2020 ident: b63 article-title: Metrics for multi-class classification: an overview – volume: 14 start-page: 5541 year: 2019 ident: b1 article-title: Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics publication-title: Int. J. Nanomedicine – start-page: 835 year: 2017 end-page: 838 ident: b41 article-title: Residual and plain convolutional neural networks for 3D brain MRI classification publication-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) – volume: 22 start-page: 1476 year: 2018 end-page: 1485 ident: b19 article-title: Anatomical landmark based deep feature representation for MR images in brain disease diagnosis publication-title: IEEE J. Biomed. Health Inf. – year: 2020 ident: b36 article-title: Attention-guided hybrid network for dementia diagnosis with structural MR images publication-title: IEEE Trans. Cybern. – volume: 71 start-page: 441 year: 2001 end-page: 447 ident: b69 article-title: Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease publication-title: J. Neurol. Neurosurg. Psychiatry – year: 2014 ident: b60 article-title: Adam: A method for stochastic optimization – volume: 25 start-page: 711 year: 2020 end-page: 719 ident: b61 article-title: Prediction of Alzheimer’s disease progression with multi-information generative adversarial network publication-title: IEEE J. Biomed. Health Inf. – volume: 248 year: 2022 ident: b12 article-title: A deep learning based framework for diagnosis of mild cognitive impairment publication-title: Knowl.-Based Syst. – year: 2019 ident: b22 article-title: On the design of convolutional neural networks for automatic detection of Alzheimer’s disease publication-title: ML4H@NeurIPS – volume: 37 start-page: 1148 year: 2016 end-page: 1161 ident: b30 article-title: Early detection of Alzheimer’s disease using M RI hippocampal texture publication-title: Human Brain Mapp. – volume: 206 year: 2020 ident: b53 article-title: Automated anatomical labelling atlas 3 publication-title: Neuroimage – volume: 213 year: 2021 ident: b9 article-title: Robust hybrid deep learning models for Alzheimer’s progression detection publication-title: Knowl.-Based Syst. – volume: 77 start-page: 53 year: 2022 end-page: 61 ident: b45 article-title: Interpretable learning based dynamic graph convolutional networks for Alzheimer’s disease analysis publication-title: Inf. Fusion – volume: 40 start-page: 1632 year: 2021 end-page: 1645 ident: b55 article-title: Relation-induced multi-modal shared representation learning for Alzheimer’s disease diagnosis publication-title: IEEE Trans. Med. Imaging – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: b48 article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging: Off. J. Int. Soc. Magn. Reson. Med. – start-page: 255 year: 2015 end-page: 262 ident: b3 article-title: Multi-view classification for identification of Alzheimer’s disease publication-title: International Workshop on Machine Learning in Medical Imaging – volume: 40 start-page: 3843 year: 2021 end-page: 3855 ident: b11 article-title: Multi-band brain network analysis for functional neuroimaging biomarker identification publication-title: IEEE Trans. Med. Imaging – volume: 63 year: 2020 ident: b7 article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation publication-title: Med. Image Anal. – year: 2015 ident: b49 article-title: Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks – volume: 44 start-page: 13 year: 2015 end-page: 25 ident: b31 article-title: Alzheimer’s disease diagnosis on structural MR images using circular harmonic functions descriptors on hippocampus and posterior cingulate cortex publication-title: Comput. Med. Imaging Graph. – reference: K. Li, Y. Zhang, K. Li, Y. Li, Y. Fu, Visual semantic reasoning for image-text matching, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 4654–4662. – start-page: 1 year: 2022 end-page: 5 ident: b46 article-title: Interpretable graph convolutional network of multi-modality brain imaging for Alzheimer’s disease diagnosis publication-title: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI) – year: 1992 ident: b71 article-title: The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction – volume: 40 start-page: 81 year: 2020 end-page: 92 ident: b10 article-title: Multi-view separable pyramid network for AD prediction at MCI stage by 18F-FDG brain PET imaging publication-title: IEEE Trans. Med. Imaging – volume: 39 start-page: 1845 year: 2020 ident: b68 article-title: Joint multi-modal longitudinal regression and classification for Alzheimer’s disease prediction publication-title: IEEE Trans. Med. Imaging – volume: 45 start-page: 427 year: 2009 end-page: 437 ident: b62 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manage. – volume: 70 start-page: 8 year: 2018 end-page: 16 ident: b26 article-title: Adaptive fusion of texture-based grading for Alzheimer’s disease classification publication-title: Comput. Med. Imaging Graph. – year: 2021 ident: b42 article-title: An explainable 3D residual self-attention deep neural network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI publication-title: IEEE J. Biomed. Health Inf. – volume: 43 start-page: 157 year: 2018 end-page: 168 ident: b38 article-title: Landmark-based deep multi-instance learning for brain disease diagnosis publication-title: Med. Image Anal. – volume: 78 year: 2022 ident: b13 article-title: Structure-constrained combination-based nonlinear association analysis between incomplete multimodal imaging and genetic data for biomarker detection of neurodegenerative diseases publication-title: Med. Image Anal. – year: 2014 ident: 10.1016/j.knosys.2023.110546_b60 – volume: 40 start-page: 81 issue: 1 year: 2020 ident: 10.1016/j.knosys.2023.110546_b10 article-title: Multi-view separable pyramid network for AD prediction at MCI stage by 18F-FDG brain PET imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3022591 – volume: 25 start-page: 711 issue: 3 year: 2020 ident: 10.1016/j.knosys.2023.110546_b61 article-title: Prediction of Alzheimer’s disease progression with multi-information generative adversarial network publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2020.3006925 – volume: 26 start-page: 462 issue: 4 year: 2007 ident: 10.1016/j.knosys.2023.110546_b29 article-title: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.887380 – volume: 185 year: 2021 ident: 10.1016/j.knosys.2023.110546_b21 article-title: Data fusion based on searchlight analysis for the prediction of Alzheimer’s disease publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115549 – year: 2022 ident: 10.1016/j.knosys.2023.110546_b14 article-title: Longitudinal study of early mild cognitive impairment via similarity-constrained group learning and self-attention based SBi-LSTM publication-title: Knowl.-Based Syst. – volume: 25 start-page: 303 issue: 3 year: 2004 ident: 10.1016/j.knosys.2023.110546_b70 article-title: Hippocampus and entorhinal cortex in mild cognitive impairment and early AD publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(03)00084-8 – volume: 5 start-page: 1 issue: 2 year: 2018 ident: 10.1016/j.knosys.2023.110546_b33 article-title: Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks publication-title: Brain Inform. doi: 10.1186/s40708-018-0080-3 – volume: 213 year: 2021 ident: 10.1016/j.knosys.2023.110546_b9 article-title: Robust hybrid deep learning models for Alzheimer’s progression detection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106688 – year: 2019 ident: 10.1016/j.knosys.2023.110546_b22 article-title: On the design of convolutional neural networks for automatic detection of Alzheimer’s disease – year: 2019 ident: 10.1016/j.knosys.2023.110546_b51 – volume: 44 start-page: 13 year: 2015 ident: 10.1016/j.knosys.2023.110546_b31 article-title: Alzheimer’s disease diagnosis on structural MR images using circular harmonic functions descriptors on hippocampus and posterior cingulate cortex publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2015.04.007 – volume: 62 start-page: 774 year: 2012 ident: 10.1016/j.knosys.2023.110546_b52 article-title: FreeSurfer publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 21 start-page: 1607 issue: 6 year: 2017 ident: 10.1016/j.knosys.2023.110546_b35 article-title: Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural MR images publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2017.2704614 – ident: 10.1016/j.knosys.2023.110546_b64 doi: 10.1109/CVPR.2016.90 – volume: 14 start-page: 5541 year: 2019 ident: 10.1016/j.knosys.2023.110546_b1 article-title: Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S200490 – volume: 208 year: 2020 ident: 10.1016/j.knosys.2023.110546_b8 article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116459 – volume: 70 start-page: 8 year: 2018 ident: 10.1016/j.knosys.2023.110546_b26 article-title: Adaptive fusion of texture-based grading for Alzheimer’s disease classification publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2018.08.002 – volume: 419 start-page: 126 year: 2021 ident: 10.1016/j.knosys.2023.110546_b67 article-title: Brain MR image classification for Alzheimer’s disease diagnosis using structural hippocampal asymmetrical attributes from directional 3-D log-gabor filter responses publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.102 – year: 2020 ident: 10.1016/j.knosys.2023.110546_b36 article-title: Attention-guided hybrid network for dementia diagnosis with structural MR images publication-title: IEEE Trans. Cybern. – volume: 53 start-page: 111 year: 2019 ident: 10.1016/j.knosys.2023.110546_b39 article-title: Multi-task exclusive relationship learning for Alzheimer’s disease progression prediction with longitudinal data publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.01.007 – ident: 10.1016/j.knosys.2023.110546_b32 doi: 10.1145/3107411.3108224 – year: 2022 ident: 10.1016/j.knosys.2023.110546_b34 article-title: Biceph-Net: A robust and lightweight framework for the diagnosis of Alzheimer’s disease using 2D-MRI scans and deep similarity learning publication-title: IEEE J. Biomed. Health Inf. – volume: 214 year: 2022 ident: 10.1016/j.knosys.2023.110546_b66 article-title: Automated detection, selection and classification of hippocampal landmark points for the diagnosis of Alzheimer’s disease publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2021.106581 – volume: 143 start-page: 1920 issue: 6 year: 2020 ident: 10.1016/j.knosys.2023.110546_b37 article-title: Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification publication-title: Brain doi: 10.1093/brain/awaa137 – volume: 133 start-page: 35 year: 2016 ident: 10.1016/j.knosys.2023.110546_b27 article-title: Extraction of sulcal medial surface and classification of Alzheimer’s disease using sulcal features publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.05.009 – year: 2022 ident: 10.1016/j.knosys.2023.110546_b40 article-title: Brain signatures based on structural MRI: Classification for MCI, PMCI, and AD publication-title: Human Brain Mapp. doi: 10.1002/hbm.25820 – volume: 206 year: 2020 ident: 10.1016/j.knosys.2023.110546_b53 article-title: Automated anatomical labelling atlas 3 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116189 – ident: 10.1016/j.knosys.2023.110546_b58 doi: 10.1109/ICCV.2019.00475 – volume: 9 start-page: 307 year: 2015 ident: 10.1016/j.knosys.2023.110546_b16 article-title: Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer’s disease: a machine learning approach publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00307 – year: 2021 ident: 10.1016/j.knosys.2023.110546_b42 article-title: An explainable 3D residual self-attention deep neural network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI publication-title: IEEE J. Biomed. Health Inf. – ident: 10.1016/j.knosys.2023.110546_b47 doi: 10.1109/ISBI.2019.8759455 – volume: 248 year: 2022 ident: 10.1016/j.knosys.2023.110546_b12 article-title: A deep learning based framework for diagnosis of mild cognitive impairment publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108815 – volume: 39 start-page: 1845 issue: 6 year: 2020 ident: 10.1016/j.knosys.2023.110546_b68 article-title: Joint multi-modal longitudinal regression and classification for Alzheimer’s disease prediction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2958943 – volume: 131 start-page: 681 issue: 3 year: 2008 ident: 10.1016/j.knosys.2023.110546_b28 article-title: Automatic classification of MR scans in Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awm319 – volume: 43 start-page: 157 year: 2018 ident: 10.1016/j.knosys.2023.110546_b38 article-title: Landmark-based deep multi-instance learning for brain disease diagnosis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.10.005 – start-page: 438 year: 2020 ident: 10.1016/j.knosys.2023.110546_b65 article-title: An extended-2D CNN for multiclass Alzheimer’s disease diagnosis through structural MRI – year: 2020 ident: 10.1016/j.knosys.2023.110546_b63 – year: 1992 ident: 10.1016/j.knosys.2023.110546_b71 – start-page: 149 year: 2018 ident: 10.1016/j.knosys.2023.110546_b18 article-title: An efficient 3D deep convolutional network for Alzheimer’s disease diagnosis using MR images – start-page: 158 year: 2019 ident: 10.1016/j.knosys.2023.110546_b20 article-title: End-to-end dementia status prediction from brain MRI using multi-task weakly-supervised attention network – volume: 71 start-page: 441 issue: 4 year: 2001 ident: 10.1016/j.knosys.2023.110546_b69 article-title: Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.71.4.441 – volume: 21 start-page: 19 issue: 1 year: 2000 ident: 10.1016/j.knosys.2023.110546_b72 article-title: Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer’s disease publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(99)00107-4 – volume: 77 start-page: 219 issue: 2 year: 2013 ident: 10.1016/j.knosys.2023.110546_b4 article-title: Vulnerable neural systems and the borderland of brain aging and neurodegeneration publication-title: Neuron doi: 10.1016/j.neuron.2013.01.002 – volume: 63 year: 2020 ident: 10.1016/j.knosys.2023.110546_b7 article-title: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101694 – volume: 23 start-page: 701 issue: 6 year: 2020 ident: 10.1016/j.knosys.2023.110546_b5 article-title: Disease-associated astrocytes in Alzheimer’s disease and aging publication-title: Nature Neurosci. doi: 10.1038/s41593-020-0624-8 – volume: 16 start-page: 391 year: 2020 ident: 10.1016/j.knosys.2023.110546_b6 article-title: Alzheimer’s disease facts and figures publication-title: Alzheimer’s Dement. – start-page: 255 year: 2015 ident: 10.1016/j.knosys.2023.110546_b3 article-title: Multi-view classification for identification of Alzheimer’s disease – volume: 48 start-page: 117 year: 2018 ident: 10.1016/j.knosys.2023.110546_b44 article-title: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.06.001 – year: 2015 ident: 10.1016/j.knosys.2023.110546_b49 – volume: 40 start-page: 1632 year: 2021 ident: 10.1016/j.knosys.2023.110546_b55 article-title: Relation-induced multi-modal shared representation learning for Alzheimer’s disease diagnosis publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3063150 – volume: 27 start-page: 685 issue: 4 year: 2008 ident: 10.1016/j.knosys.2023.110546_b48 article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging: Off. J. Int. Soc. Magn. Reson. Med. doi: 10.1002/jmri.21049 – volume: 30 year: 2017 ident: 10.1016/j.knosys.2023.110546_b57 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 40 start-page: 2354 issue: 9 year: 2021 ident: 10.1016/j.knosys.2023.110546_b25 article-title: Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3077079 – volume: 30 start-page: 81 issue: 1/2 year: 1938 ident: 10.1016/j.knosys.2023.110546_b54 article-title: A new measure of rank correlation publication-title: Biometrika doi: 10.2307/2332226 – volume: 78 year: 2022 ident: 10.1016/j.knosys.2023.110546_b13 article-title: Structure-constrained combination-based nonlinear association analysis between incomplete multimodal imaging and genetic data for biomarker detection of neurodegenerative diseases publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102419 – volume: 6 start-page: 67 issue: 2 year: 2010 ident: 10.1016/j.knosys.2023.110546_b15 article-title: The clinical use of structural MRI in Alzheimer disease publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2009.215 – volume: 40 start-page: 3843 issue: 12 year: 2021 ident: 10.1016/j.knosys.2023.110546_b11 article-title: Multi-band brain network analysis for functional neuroimaging biomarker identification publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3099641 – volume: 12 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.knosys.2023.110546_b74 article-title: Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s disease publication-title: Nature Commun. doi: 10.1038/s41467-021-21057-y – volume: 91 start-page: 21 year: 2017 ident: 10.1016/j.knosys.2023.110546_b17 article-title: Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.10.002 – volume: 77 start-page: 53 year: 2022 ident: 10.1016/j.knosys.2023.110546_b45 article-title: Interpretable learning based dynamic graph convolutional networks for Alzheimer’s disease analysis publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.07.013 – volume: 238 year: 2022 ident: 10.1016/j.knosys.2023.110546_b43 article-title: Diagnosis of Alzheimer’s disease via an attention-based multi-scale convolutional neural network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107942 – start-page: 649 year: 2020 ident: 10.1016/j.knosys.2023.110546_b56 article-title: Attention-driven dynamic graph convolutional network for multi-label image recognition – volume: 7 start-page: 48 year: 2015 ident: 10.1016/j.knosys.2023.110546_b2 article-title: Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2015.00048 – volume: 42 start-page: 880 issue: 4 year: 2018 ident: 10.1016/j.knosys.2023.110546_b24 article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2889096 – year: 2014 ident: 10.1016/j.knosys.2023.110546_b59 – volume: 189 start-page: 276 year: 2019 ident: 10.1016/j.knosys.2023.110546_b23 article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.01.031 – volume: 37 start-page: 1148 issue: 3 year: 2016 ident: 10.1016/j.knosys.2023.110546_b30 article-title: Early detection of Alzheimer’s disease using M RI hippocampal texture publication-title: Human Brain Mapp. doi: 10.1002/hbm.23091 – volume: 22 start-page: 1476 issue: 5 year: 2018 ident: 10.1016/j.knosys.2023.110546_b19 article-title: Anatomical landmark based deep feature representation for MR images in brain disease diagnosis publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2018.2791863 – start-page: 1 year: 2022 ident: 10.1016/j.knosys.2023.110546_b46 article-title: Interpretable graph convolutional network of multi-modality brain imaging for Alzheimer’s disease diagnosis – start-page: 835 year: 2017 ident: 10.1016/j.knosys.2023.110546_b41 article-title: Residual and plain convolutional neural networks for 3D brain MRI classification – volume: 45 start-page: 427 issue: 4 year: 2009 ident: 10.1016/j.knosys.2023.110546_b62 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2009.03.002 – volume: 99 start-page: 4703 issue: 7 year: 2002 ident: 10.1016/j.knosys.2023.110546_b73 article-title: Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.052587399 – year: 2019 ident: 10.1016/j.knosys.2023.110546_b50 |
| SSID | ssj0002218 |
| Score | 2.500812 |
| Snippet | Structural magnetic resonance imaging (sMRI) is widely applied in Alzheimer’s disease (AD) diagnosis tasks by reflecting structural anomalies of the brain.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110546 |
| SubjectTerms | Alzheimer’s disease Deep learning Graph convolutional network Medical image processing Structural magnetic resonance imaging |
| Title | Multi-relation graph convolutional network for Alzheimer’s disease diagnosis using structural MRI |
| URI | https://dx.doi.org/10.1016/j.knosys.2023.110546 |
| Volume | 270 |
| WOSCitedRecordID | wos000986061200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa2Sw-9lD5VSlv50BtylXWc2D6uEBVQQFVLpb1FiWOLwCogAohy4m_w9_pLOn7Eu3QRfUi9RFESx9HMl_HMeB4IvddUj7JaW7MkV4SlpiZlno2IYaDrw51KVMo1m-B7e2IykZ8Hg_M-F-ZiyttWXF7Kk__KargGzLaps3_B7vhSuADnwHQ4Atvh-EeMdym15DQEua25itQuuDzMCjxpfey3CzEcT68OdGN7qISwB9n1uzbWMWvj8Jpu7bzzfgdbbNYV6tj9sjWv137qXXPELot1KBAd9fXolt5uIhg3nSt10pTHB2UT_a-hxcqO3XWahR542QjPhnU2uCmobRlB6MxNsZg_E5yQCeFJKDmrvQgWHHR-lsh5GU19d5EFee9dD4cfjoAY3231dZraxIaM_VJe2y3YX-10djYwuxK73fwALVGeSTFES-Otjcl2XMIpdY7h-Hl9zqULDFyc626dZk5P2X-CHgcDA489MJ6igW6foeW-eQcOsvw5Urdxgh1O8C2c4IATDDjBESc_rm86HBCCI0KwQwieIQQDQl6gbx839tc3Sei4QRSYjmdEgUg3FZjwkiuqZFVrrrQc1UnFpMm5ykFhNCIzZUmlpsaktC4Tlir40auS5Tp9iYbtcatfIZwzuAX6bZ0Zu3cOholORkYIILcwOmMrKO1pVqhQjt52RZkWfdzhYeEpXVhKF57SK4jEUSe-HMtvnuc9O4qgUnpVsQAE3Tvy9T-PXEWPZj_AGzQEwuu36KG6OGu603cBaj8BlOmgjQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-relation+graph+convolutional+network+for+Alzheimer%E2%80%99s+disease+diagnosis+using+structural+MRI&rft.jtitle=Knowledge-based+systems&rft.au=Zhang%2C+Jin&rft.au=He%2C+Xiaohai&rft.au=Qing%2C+Linbo&rft.au=Chen%2C+Xiang&rft.date=2023-06-21&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=270&rft_id=info:doi/10.1016%2Fj.knosys.2023.110546&rft.externalDocID=S0950705123002964 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |