A partitional clustering algorithm validated by a clustering tendency index based on graph theory
Applying graph theory to clustering, we propose a partitional clustering method and a clustering tendency index. No initial assumptions about the data set are requested by the method. The number of clusters and the partition that best fits the data set, are selected according to the optimal clusteri...
Uložené v:
| Vydané v: | Pattern recognition Ročník 39; číslo 5; s. 776 - 788 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.05.2006
|
| Predmet: | |
| ISSN: | 0031-3203, 1873-5142 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Applying graph theory to clustering, we propose a partitional clustering method and a clustering tendency index. No initial assumptions about the data set are requested by the method. The number of clusters and the partition that best fits the data set, are selected according to the optimal clustering tendency index value. |
|---|---|
| ISSN: | 0031-3203 1873-5142 |
| DOI: | 10.1016/j.patcog.2005.10.027 |