Sparse and robust support vector machine with capped squared loss for large-scale pattern classification
Support vector machine (SVM), being considered one of the most efficient tools for classification, has received widespread attention in various fields. However, its performance is hindered when dealing with large-scale pattern classification tasks due to high memory requirements and running very slo...
Saved in:
| Published in: | Pattern recognition Vol. 153; p. 110544 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.09.2024
|
| Subjects: | |
| ISSN: | 0031-3203, 1873-5142 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Support vector machine (SVM), being considered one of the most efficient tools for classification, has received widespread attention in various fields. However, its performance is hindered when dealing with large-scale pattern classification tasks due to high memory requirements and running very slow. To address this challenge, we construct a novel sparse and robust SVM based on our newly proposed capped squared loss (named as Lcsl-SVM). To solve Lcsl-SVM, we first focus on establishing optimality theory of Lcsl-SVM via our defined proximal stationary point, which is convenient for us to efficiently characterize the Lcsl support vectors of Lcsl-SVM. We subsequently demonstrate that the Lcsl support vectors comprise merely a minor fraction of entire training data. This observation leads us to introduce the concept of the working set. Furthermore, we design a novel subspace fast algorithm with working set (named as Lcsl-ADMM) for solving Lcsl-SVM, which is proven that Lcsl-ADMM has both global convergence and relatively low computational complexity. Finally, numerical experiments show that Lcsl-ADMM has excellent performances in terms of getting the best classification accuracy, using the shortest time and presenting the smallest numbers of support vectors when solving large-scale pattern classification problems.
•We establish a novel SVM model called capped squared loss SVM.•We prove the optimality theory for capped squared loss SVM.•We propose a novel subspace fast algorithm with working set to address the capped squared loss SVM.•We demonstrate that our algorithm can efficiently solve the capped squared loss SVM. |
|---|---|
| AbstractList | Support vector machine (SVM), being considered one of the most efficient tools for classification, has received widespread attention in various fields. However, its performance is hindered when dealing with large-scale pattern classification tasks due to high memory requirements and running very slow. To address this challenge, we construct a novel sparse and robust SVM based on our newly proposed capped squared loss (named as Lcsl-SVM). To solve Lcsl-SVM, we first focus on establishing optimality theory of Lcsl-SVM via our defined proximal stationary point, which is convenient for us to efficiently characterize the Lcsl support vectors of Lcsl-SVM. We subsequently demonstrate that the Lcsl support vectors comprise merely a minor fraction of entire training data. This observation leads us to introduce the concept of the working set. Furthermore, we design a novel subspace fast algorithm with working set (named as Lcsl-ADMM) for solving Lcsl-SVM, which is proven that Lcsl-ADMM has both global convergence and relatively low computational complexity. Finally, numerical experiments show that Lcsl-ADMM has excellent performances in terms of getting the best classification accuracy, using the shortest time and presenting the smallest numbers of support vectors when solving large-scale pattern classification problems.
•We establish a novel SVM model called capped squared loss SVM.•We prove the optimality theory for capped squared loss SVM.•We propose a novel subspace fast algorithm with working set to address the capped squared loss SVM.•We demonstrate that our algorithm can efficiently solve the capped squared loss SVM. |
| ArticleNumber | 110544 |
| Author | Zhang, Hongwei Wang, Huajun Li, Wenqian |
| Author_xml | – sequence: 1 givenname: Huajun surname: Wang fullname: Wang, Huajun email: huajunwang2023@163.com organization: Department of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, PR China – sequence: 2 givenname: Hongwei surname: Zhang fullname: Zhang, Hongwei email: optimization2024@163.com organization: Department of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, PR China – sequence: 3 givenname: Wenqian surname: Li fullname: Li, Wenqian email: optimization_li@163.com organization: College of Life Science, Hunan Normal University, Changsha, PR China |
| BookMark | eNqFkM1OwzAQhC1UJErhDTj4BVLsOE4IByRU8SdV4kDv1sZet67SJNhuEW-PSzhxgNMcdmc0852TSdd3SMgVZ3POeHm9nQ8Qdb-e5ywv5pwzWRQnZMpvKpFJXuQTMmVM8EzkTJyR8xC2jPEqHaZk8zaAD0ihM9T3zT5EGvbD0PtID6hj7-kO9MZ1SD9c3FANw4CGhvc9-KRtHwK16akFv8YsaGiRpi4RfUd1CyE46zRE13cX5NRCG_DyR2dk9fiwWjxny9enl8X9MtOClTFrCgEMtGwMIq8bgaUBmQaVJRbSSrAgGitrDVJXpqktL8GWlZGsKWrDUcxIMcZqn7p5tGrwbgf-U3GmjrDUVo2w1BGWGmEl2-0vm3bxu3f04Nr_zHejGdOug0OvgnbYaTTOJ4bK9O7vgC-pzY2T |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2025_130893 crossref_primary_10_1016_j_neunet_2024_107087 crossref_primary_10_1016_j_patcog_2024_111288 crossref_primary_10_2478_amns_2024_1984 crossref_primary_10_3390_pr13092858 crossref_primary_10_1016_j_asoc_2024_112331 |
| Cites_doi | 10.1007/s11590-021-01756-7 10.1016/j.patcog.2021.107860 10.1016/j.patrec.2010.06.017 10.1016/j.ins.2023.119136 10.1109/TPAMI.2013.178 10.1109/TSMC.2024.3375021 10.1016/j.patcog.2017.09.035 10.1016/j.chemolab.2018.04.003 10.1109/TMI.2023.3306781 10.1016/j.patcog.2023.109478 10.1023/A:1018628609742 10.1007/s10489-023-04511-w 10.1109/TNNLS.2016.2547324 10.1016/j.asoc.2021.107099 10.1016/j.patcog.2020.107395 10.1109/ICDMW.2018.00173 10.1007/s00521-019-04436-x 10.1109/TPAMI.2021.3092177 10.1007/s11063-015-9456-z 10.1007/s00521-022-07460-6 10.1007/s00521-020-04741-w 10.1162/NECO_a_00837 10.1016/j.engappai.2020.103635 10.1007/s11042-023-16412-8 10.1016/j.patcog.2023.109479 10.1016/j.patcog.2017.03.011 10.1007/s00521-020-05225-7 10.1109/TNNLS.2015.2513006 10.1007/BF00994018 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2024.110544 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| ExternalDocumentID | 10_1016_j_patcog_2024_110544 S0031320324002954 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c306t-b43a0ac5bdee19b3e6da510566e45f5afa3bf59ca5c7db9f16af67d50b49d1e3 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001241408500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Tue Nov 18 21:53:52 EST 2025 Sat Nov 29 03:52:39 EST 2025 Sat Jun 01 15:41:37 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Working set Fast algorithm Support vectors Capped squared loss Low computational complexity |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-b43a0ac5bdee19b3e6da510566e45f5afa3bf59ca5c7db9f16af67d50b49d1e3 |
| ParticipantIDs | crossref_primary_10_1016_j_patcog_2024_110544 crossref_citationtrail_10_1016_j_patcog_2024_110544 elsevier_sciencedirect_doi_10_1016_j_patcog_2024_110544 |
| PublicationCentury | 2000 |
| PublicationDate | September 2024 2024-09-00 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Xu, Yang, Pan (b20) 2017; 28 Feng, Xu (b13) 2022; 34 Wang, Shao, Zhou, Zhang, Xiu (b24) 2022; 40 Huang, Shi, Suykens (b9) 2014; 36 Gao, Chen (b2) 2023; 140 Huang, Zheng, Sun, Hotta, Fujimoto, Naoi (b17) 2010; 31 Wang, Shao, Xiu (b30) 2022; 16 Wang, Shao (b16) 2023; 53 Wang, Zhou, Shao (b35) 2023; 283 Yuan, Xu (b18) 2021; 114 Zhou, Xiu, Qi (b32) 2021; 22 Xu, Caramanis, Mannor (b15) 2009; 10 Hazarika, Gupta (b27) 2022; 215 Wang, Xu, Zhou (b10) 2021; 33 Shen, Niu, Qi, Tian (b12) 2017; 68 L. Guan, L. Qiao, D. Li, T. Sun, K. Ge, X. Lu, An efficient ADMM-based algorithm to nonconvex penalized support vector machines, in: Proc. IEEE Int. Conf. Data Mining Workshops, 2018, pp. 1209–1216. Gupta, Hazarika, Berlin (b26) 2020; 32 Rockafellar, Wets (b36) 2009 Wang, Chen, Liu, Elliott, Kwok, Pena, Frazer, Mccarthy, Carneiro (b38) 2024; 43 Xi, Huang, Suykens, Wang (b7) 2016; 43 Suykens, Vandewalle (b6) 1999; 9 Wang, Shao (b39) 2024 Yang, Dong (b34) 2018; 177 Borah, Gupta (b28) 2020; 32 Huang, Shi, Suykens (b19) 2017; 28 Wang, Zhu, Shao (b21) 2024 Zhu, Song, Xiao (b5) 2020; 91 Cortes, Vapnik (b1) 1995; 20 Golub, Van-Loan (b37) 1996 Wang, Li, Wang (b31) 2023; 642 Yu, Li, Liu (b3) 2023; 139 Allen-Zhu (b8) 2018; 18 Gupta, Gupta, Sarma (b11) 2024; 83 Wang, Xiu, Zhou (b33) 2022 Feng, Yang, Huang, Mehrkanoon, Suykens (b4) 2016; 28 Gupta, Gupta (b22) 2021; 102 Singla, Ghosh, Shukla, Pedrycz (b29) 2020; 105 Yan, Ye, Zhang, Yu, Yuan, Xu, Fu (b23) 2018; 74 Wang, Shao (b25) 2023; 26 Wang (10.1016/j.patcog.2024.110544_b25) 2023; 26 Wang (10.1016/j.patcog.2024.110544_b39) 2024 Wang (10.1016/j.patcog.2024.110544_b10) 2021; 33 Shen (10.1016/j.patcog.2024.110544_b12) 2017; 68 Wang (10.1016/j.patcog.2024.110544_b16) 2023; 53 Feng (10.1016/j.patcog.2024.110544_b13) 2022; 34 Suykens (10.1016/j.patcog.2024.110544_b6) 1999; 9 Singla (10.1016/j.patcog.2024.110544_b29) 2020; 105 Xu (10.1016/j.patcog.2024.110544_b20) 2017; 28 Wang (10.1016/j.patcog.2024.110544_b38) 2024; 43 Wang (10.1016/j.patcog.2024.110544_b35) 2023; 283 Wang (10.1016/j.patcog.2024.110544_b21) 2024 Yan (10.1016/j.patcog.2024.110544_b23) 2018; 74 Wang (10.1016/j.patcog.2024.110544_b24) 2022; 40 Zhou (10.1016/j.patcog.2024.110544_b32) 2021; 22 Allen-Zhu (10.1016/j.patcog.2024.110544_b8) 2018; 18 Cortes (10.1016/j.patcog.2024.110544_b1) 1995; 20 Gao (10.1016/j.patcog.2024.110544_b2) 2023; 140 Zhu (10.1016/j.patcog.2024.110544_b5) 2020; 91 Wang (10.1016/j.patcog.2024.110544_b31) 2023; 642 Huang (10.1016/j.patcog.2024.110544_b19) 2017; 28 Hazarika (10.1016/j.patcog.2024.110544_b27) 2022; 215 Huang (10.1016/j.patcog.2024.110544_b17) 2010; 31 Borah (10.1016/j.patcog.2024.110544_b28) 2020; 32 Wang (10.1016/j.patcog.2024.110544_b33) 2022 Huang (10.1016/j.patcog.2024.110544_b9) 2014; 36 Golub (10.1016/j.patcog.2024.110544_b37) 1996 Xu (10.1016/j.patcog.2024.110544_b15) 2009; 10 10.1016/j.patcog.2024.110544_b14 Gupta (10.1016/j.patcog.2024.110544_b22) 2021; 102 Gupta (10.1016/j.patcog.2024.110544_b26) 2020; 32 Yu (10.1016/j.patcog.2024.110544_b3) 2023; 139 Xi (10.1016/j.patcog.2024.110544_b7) 2016; 43 Yuan (10.1016/j.patcog.2024.110544_b18) 2021; 114 Feng (10.1016/j.patcog.2024.110544_b4) 2016; 28 Rockafellar (10.1016/j.patcog.2024.110544_b36) 2009 Gupta (10.1016/j.patcog.2024.110544_b11) 2024; 83 Wang (10.1016/j.patcog.2024.110544_b30) 2022; 16 Yang (10.1016/j.patcog.2024.110544_b34) 2018; 177 |
| References_xml | – volume: 18 start-page: 1 year: 2018 end-page: 51 ident: b8 article-title: Katyusha: the first direct acceleration of stochastic gradient methods publication-title: J. Mach. Learn. Res. – volume: 34 start-page: 18643 year: 2022 end-page: 18661 ident: b13 article-title: Support matrix machine with pinball loss for classification publication-title: Neural Comput. Appl. – volume: 16 start-page: 999 year: 2022 end-page: 1014 ident: b30 article-title: Proximal operator and optimality conditions for ramp loss SVM publication-title: Optim. Lett. – volume: 177 start-page: 89 year: 2018 end-page: 99 ident: b34 article-title: Support vector machine with truncated pinball loss and its application in pattern recognition publication-title: Chemometr. Intell. Lab. Syst. – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: b6 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – volume: 32 start-page: 12971 year: 2020 end-page: 12998 ident: b26 article-title: Robust regularized extreme learning machine with asymmetric Huber loss function publication-title: Neural Comput. Appl. – volume: 28 start-page: 1217 year: 2016 end-page: 1247 ident: b4 article-title: Robust support vector machines for classification with nonconvex and smooth losses publication-title: Neural Comput. – volume: 53 start-page: 19647 year: 2023 end-page: 19671 ident: b16 article-title: Sparse and robust SVM classifier for large scale classification publication-title: Appl. Intell. – volume: 114 year: 2021 ident: b18 article-title: Bound estimation-based safe acceleration for maximum margin of twin spheres machine with pinball loss publication-title: Pattern Recognit. – year: 2024 ident: b21 article-title: Fast support vector machine with low computational complexity for large-scale classification publication-title: IEEE Trans. Syst. Man, Cybern. Syst. – volume: 140 year: 2023 ident: b2 article-title: Multicycle disassembly-based decomposition algorithm to train multiclass support vector machines publication-title: Pattern Recognit. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b1 article-title: Support vector networks publication-title: Mach. Learn. – volume: 215 year: 2022 ident: b27 article-title: Random vector functional link with publication-title: Comput. Meth. Prg. Bio. – volume: 22 start-page: 1 year: 2021 end-page: 45 ident: b32 article-title: Global and quadratic convergence of Newton hard-thresholding pursuit publication-title: J. Mach. Learn. Res. – volume: 28 start-page: 1584 year: 2017 end-page: 1593 ident: b19 article-title: Solution path for pin-SVM classifiers with positive and negative publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2022 ident: b33 article-title: An extended Newton-type algorithm for L2-regularized sparse logistic regression and its efficiency for classifying large-scale datasets publication-title: J. Comput. Appl. Math. – volume: 26 year: 2023 ident: b25 article-title: Fast truncated Huber loss SVM for large scale classification publication-title: Knowl. Based. Syst. – volume: 68 start-page: 199 year: 2017 end-page: 210 ident: b12 article-title: Support vector machine classifier with truncated pinball loss publication-title: Pattern Recognit. – reference: L. Guan, L. Qiao, D. Li, T. Sun, K. Ge, X. Lu, An efficient ADMM-based algorithm to nonconvex penalized support vector machines, in: Proc. IEEE Int. Conf. Data Mining Workshops, 2018, pp. 1209–1216. – volume: 642 year: 2023 ident: b31 article-title: Fast SVM classifier for large-scale classification problems publication-title: Inform. Sci. – volume: 36 start-page: 984 year: 2014 end-page: 997 ident: b9 article-title: Support vector machine classifier with pinball loss publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 105 year: 2020 ident: b29 article-title: Robust twin support vector regression based on rescaled hinge loss publication-title: Pattern Recognit. – volume: 33 start-page: 3781 year: 2021 end-page: 3798 ident: b10 article-title: Twin-parametric margin support vector machine with truncated pinball loss publication-title: Neural Comput. Appl. – volume: 283 start-page: 1 year: 2023 end-page: 16 ident: b35 article-title: A new fast ADMM for kernelless SVM classifier with truncated fraction loss publication-title: Knowl.-Based. Syst. – volume: 91 year: 2020 ident: b5 article-title: Support vector machine classifier with huberized pinball loss publication-title: Eng. Appl. Artif. Intell. – volume: 102 year: 2021 ident: b22 article-title: On robust asymmetric Lagrangian publication-title: Appl. Soft Comput. – volume: 74 start-page: 434 year: 2018 end-page: 447 ident: b23 article-title: Least squares twin bounded support vector machines based on L1-norm distance metric for classification publication-title: Pattern Recognit. – start-page: 1 year: 2024 end-page: 13 ident: b39 article-title: Fast generalized ramp loss support vector machine for pattern classification publication-title: Pattern Recognit. – volume: 43 start-page: 887 year: 2016 end-page: 903 ident: b7 article-title: Coordinate descent algorithm for ramp loss linear programming support vector machines publication-title: Neural Process. Lett. – volume: 43 start-page: 392 year: 2024 end-page: 404 ident: b38 article-title: An interpretable and accurate deep-learning diagnosis framework modelled with fully and semi-supervised reciprocal learning publication-title: IEEE Trans. Med. Imaging – year: 1996 ident: b37 article-title: Matrix Computations – volume: 28 start-page: 359 year: 2017 end-page: 370 ident: b20 article-title: A novel twin support vector machine with pinball loss publication-title: IEEE Trans. Neural Netw. Learn. – volume: 83 start-page: 22119 year: 2024 end-page: 22151 ident: b11 article-title: Functional iterative approach for Universum-based primal twin bounded support vector machine to EEG classification (FUPTBSVM) publication-title: Multimed. Tools. Appl. – volume: 10 start-page: 1485 year: 2009 end-page: 1510 ident: b15 article-title: Robustness and regularization of support vector machines publication-title: J. Mach. Learn. Res. – volume: 32 start-page: 9245 year: 2020 end-page: 9265 ident: b28 article-title: Functional iterative approaches for solving support vector classification problems based on generalized huber loss publication-title: Neural Comput. Appl. – volume: 139 year: 2023 ident: b3 article-title: Fast support vector machine training via three-term conjugate-like SMO algorithm publication-title: Pattern Recognit. – volume: 40 start-page: 7253 year: 2022 end-page: 7265 ident: b24 article-title: Support vector machine classifier via publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2009 ident: b36 article-title: Variational Analysis – volume: 31 start-page: 1944 year: 2010 end-page: 1951 ident: b17 article-title: Sparse learning for support vector classification publication-title: Pattern Recognit. Lett. – volume: 16 start-page: 999 issue: 3 year: 2022 ident: 10.1016/j.patcog.2024.110544_b30 article-title: Proximal operator and optimality conditions for ramp loss SVM publication-title: Optim. Lett. doi: 10.1007/s11590-021-01756-7 – volume: 283 start-page: 1 year: 2023 ident: 10.1016/j.patcog.2024.110544_b35 article-title: A new fast ADMM for kernelless SVM classifier with truncated fraction loss publication-title: Knowl.-Based. Syst. – volume: 114 year: 2021 ident: 10.1016/j.patcog.2024.110544_b18 article-title: Bound estimation-based safe acceleration for maximum margin of twin spheres machine with pinball loss publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.107860 – volume: 31 start-page: 1944 issue: 13 year: 2010 ident: 10.1016/j.patcog.2024.110544_b17 article-title: Sparse learning for support vector classification publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2010.06.017 – volume: 642 year: 2023 ident: 10.1016/j.patcog.2024.110544_b31 article-title: Fast SVM classifier for large-scale classification problems publication-title: Inform. Sci. doi: 10.1016/j.ins.2023.119136 – volume: 36 start-page: 984 issue: 5 year: 2014 ident: 10.1016/j.patcog.2024.110544_b9 article-title: Support vector machine classifier with pinball loss publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.178 – year: 2024 ident: 10.1016/j.patcog.2024.110544_b21 article-title: Fast support vector machine with low computational complexity for large-scale classification publication-title: IEEE Trans. Syst. Man, Cybern. Syst. doi: 10.1109/TSMC.2024.3375021 – volume: 74 start-page: 434 year: 2018 ident: 10.1016/j.patcog.2024.110544_b23 article-title: Least squares twin bounded support vector machines based on L1-norm distance metric for classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.09.035 – volume: 177 start-page: 89 year: 2018 ident: 10.1016/j.patcog.2024.110544_b34 article-title: Support vector machine with truncated pinball loss and its application in pattern recognition publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2018.04.003 – volume: 43 start-page: 392 issue: 1 year: 2024 ident: 10.1016/j.patcog.2024.110544_b38 article-title: An interpretable and accurate deep-learning diagnosis framework modelled with fully and semi-supervised reciprocal learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2023.3306781 – volume: 139 year: 2023 ident: 10.1016/j.patcog.2024.110544_b3 article-title: Fast support vector machine training via three-term conjugate-like SMO algorithm publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.109478 – volume: 9 start-page: 293 year: 1999 ident: 10.1016/j.patcog.2024.110544_b6 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – volume: 26 year: 2023 ident: 10.1016/j.patcog.2024.110544_b25 article-title: Fast truncated Huber loss SVM for large scale classification publication-title: Knowl. Based. Syst. – volume: 53 start-page: 19647 year: 2023 ident: 10.1016/j.patcog.2024.110544_b16 article-title: Sparse and robust SVM classifier for large scale classification publication-title: Appl. Intell. doi: 10.1007/s10489-023-04511-w – start-page: 1 year: 2024 ident: 10.1016/j.patcog.2024.110544_b39 article-title: Fast generalized ramp loss support vector machine for pattern classification publication-title: Pattern Recognit. – volume: 28 start-page: 1584 issue: 7 year: 2017 ident: 10.1016/j.patcog.2024.110544_b19 article-title: Solution path for pin-SVM classifiers with positive and negative τ values publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2547324 – volume: 102 year: 2021 ident: 10.1016/j.patcog.2024.110544_b22 article-title: On robust asymmetric Lagrangian ν-twin support vector regression using pinball loss function publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107099 – year: 2022 ident: 10.1016/j.patcog.2024.110544_b33 article-title: An extended Newton-type algorithm for L2-regularized sparse logistic regression and its efficiency for classifying large-scale datasets publication-title: J. Comput. Appl. Math. – volume: 105 year: 2020 ident: 10.1016/j.patcog.2024.110544_b29 article-title: Robust twin support vector regression based on rescaled hinge loss publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107395 – year: 2009 ident: 10.1016/j.patcog.2024.110544_b36 – ident: 10.1016/j.patcog.2024.110544_b14 doi: 10.1109/ICDMW.2018.00173 – volume: 32 start-page: 9245 issue: 13 year: 2020 ident: 10.1016/j.patcog.2024.110544_b28 article-title: Functional iterative approaches for solving support vector classification problems based on generalized huber loss publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04436-x – volume: 40 start-page: 7253 issue: 10 year: 2022 ident: 10.1016/j.patcog.2024.110544_b24 article-title: Support vector machine classifier via L0/1 soft-margin loss publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3092177 – volume: 43 start-page: 887 year: 2016 ident: 10.1016/j.patcog.2024.110544_b7 article-title: Coordinate descent algorithm for ramp loss linear programming support vector machines publication-title: Neural Process. Lett. doi: 10.1007/s11063-015-9456-z – volume: 34 start-page: 18643 issue: 21 year: 2022 ident: 10.1016/j.patcog.2024.110544_b13 article-title: Support matrix machine with pinball loss for classification publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07460-6 – volume: 32 start-page: 12971 issue: 16 year: 2020 ident: 10.1016/j.patcog.2024.110544_b26 article-title: Robust regularized extreme learning machine with asymmetric Huber loss function publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04741-w – volume: 28 start-page: 1217 issue: 6 year: 2016 ident: 10.1016/j.patcog.2024.110544_b4 article-title: Robust support vector machines for classification with nonconvex and smooth losses publication-title: Neural Comput. doi: 10.1162/NECO_a_00837 – volume: 91 year: 2020 ident: 10.1016/j.patcog.2024.110544_b5 article-title: Support vector machine classifier with huberized pinball loss publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103635 – volume: 22 start-page: 1 year: 2021 ident: 10.1016/j.patcog.2024.110544_b32 article-title: Global and quadratic convergence of Newton hard-thresholding pursuit publication-title: J. Mach. Learn. Res. – volume: 10 start-page: 1485 issue: 7 year: 2009 ident: 10.1016/j.patcog.2024.110544_b15 article-title: Robustness and regularization of support vector machines publication-title: J. Mach. Learn. Res. – volume: 215 year: 2022 ident: 10.1016/j.patcog.2024.110544_b27 article-title: Random vector functional link with ɛ-insensitive Huber loss function for biomedical data classification publication-title: Comput. Meth. Prg. Bio. – year: 1996 ident: 10.1016/j.patcog.2024.110544_b37 – volume: 83 start-page: 22119 year: 2024 ident: 10.1016/j.patcog.2024.110544_b11 article-title: Functional iterative approach for Universum-based primal twin bounded support vector machine to EEG classification (FUPTBSVM) publication-title: Multimed. Tools. Appl. doi: 10.1007/s11042-023-16412-8 – volume: 140 year: 2023 ident: 10.1016/j.patcog.2024.110544_b2 article-title: Multicycle disassembly-based decomposition algorithm to train multiclass support vector machines publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.109479 – volume: 68 start-page: 199 year: 2017 ident: 10.1016/j.patcog.2024.110544_b12 article-title: Support vector machine classifier with truncated pinball loss publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.03.011 – volume: 18 start-page: 1 issue: 221 year: 2018 ident: 10.1016/j.patcog.2024.110544_b8 article-title: Katyusha: the first direct acceleration of stochastic gradient methods publication-title: J. Mach. Learn. Res. – volume: 33 start-page: 3781 year: 2021 ident: 10.1016/j.patcog.2024.110544_b10 article-title: Twin-parametric margin support vector machine with truncated pinball loss publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05225-7 – volume: 28 start-page: 359 issue: 2 year: 2017 ident: 10.1016/j.patcog.2024.110544_b20 article-title: A novel twin support vector machine with pinball loss publication-title: IEEE Trans. Neural Netw. Learn. doi: 10.1109/TNNLS.2015.2513006 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.patcog.2024.110544_b1 article-title: Support vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 |
| SSID | ssj0017142 |
| Score | 2.4931672 |
| Snippet | Support vector machine (SVM), being considered one of the most efficient tools for classification, has received widespread attention in various fields.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110544 |
| SubjectTerms | Capped squared loss Fast algorithm Low computational complexity Support vectors Working set |
| Title | Sparse and robust support vector machine with capped squared loss for large-scale pattern classification |
| URI | https://dx.doi.org/10.1016/j.patcog.2024.110544 |
| Volume | 153 |
| WOSCitedRecordID | wos001241408500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg48BlfIsxQD5wq1I1sZ2P4zQNFYSmSVSst8h2HFhV0qxptv35PMcvbsvQYAcuUWU5jtv36_vyL-8R8gGMBAdDBGEqlxCgcB0F0kCUwhUro1gmKe-a9n37kpyeprNZdoaUoKZrJ5BUVXpzk9X_VdQwBsK2r87eQ9x-URiAzyB0uILY4fpPgv9aQ6zqDgVWS9U262HT1tbLHl51Gfrhz44_aZB1LusafM7msu2Y6AuwmR3zcGEZ4kEDEjS29qpNGw619bQttWgjTXRrz3CGpyNtDvfPMSE9aeW89aM-Tz1ZVt-vzYXnBXXkgnNTXfawxYxExD3lymtZFgYsGrMdLSvYlp4Ep0O4uo-3VLjLJsxH8N1gyyP7gNFm-m7F7N8smecX9tS1ee5Wye0quVvlIdmLEpGlA7J39Olk9tmfOSUhd7Xlcff9i5YdG_D2bv7syGw5J9OnZB-jCnrk0PCMPDDVc_Kk79hBUYG_ID8cOCiAgzpwUAQHdeCgCA5qwUEdOCiCg1pwUAAH3QIHRXDQXXC8JNOPJ9PjSYC9NgINQeM6UJzJsdRCFcaEmWImLqT1vePYcFEKWUqmSpFpKXRSqKwMY1nGSSHGimdFaNgrMqiWlXlNKMTETBRjppUtrVhKBVZCq7gAS6bTNCsPCOt_t1xjHXrbDmWR3yW1AxL4u2pXh-Uv85NeJDn6ks5HzAFnd9755p5POiSPN3-Ct2SwXrXmHXmkr9YXzeo9guwXYPqbHA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+and+robust+support+vector+machine+with+capped+squared+loss+for+large-scale+pattern+classification&rft.jtitle=Pattern+recognition&rft.au=Wang%2C+Huajun&rft.au=Zhang%2C+Hongwei&rft.au=Li%2C+Wenqian&rft.date=2024-09-01&rft.issn=0031-3203&rft.volume=153&rft.spage=110544&rft_id=info:doi/10.1016%2Fj.patcog.2024.110544&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2024_110544 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |