Enabling technologies for fog computing in healthcare IoT systems
Context: A fog computing architecture that is geographically distributed and to which a variety of heterogeneous devices are ubiquitously connected at the end of a network in order to provide collaboratively variable and flexible communication, computation, and storage services. Fog computing has ma...
Saved in:
| Published in: | Future generation computer systems Vol. 90; pp. 62 - 78 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.01.2019
|
| Subjects: | |
| ISSN: | 0167-739X, 1872-7115 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Context: A fog computing architecture that is geographically distributed and to which a variety of heterogeneous devices are ubiquitously connected at the end of a network in order to provide collaboratively variable and flexible communication, computation, and storage services. Fog computing has many advantages and it is suited for the applications whereby real-time, high response time, and low latency are of the utmost importance, especially healthcare applications. Objectives: The aim of this study was to present a systematic literature review of the technologies for fog computing in the healthcare IoT systems field and analyze the previous. Providing motivation, limitations faced by researchers, and suggestions proposed to analysts for improving this essential research field. Methods: The investigations were systematically performed on fog computing in the healthcare field by all studies; furthermore, the four databases Web of Science (WoS), ScienceDirect, IEEE Xplore Digital Library, and Scopus from 2007 to 2017 were used to analyze their architecture, applications, and performance evaluation. Results: A total of 99 articles were selected on fog computing in healthcare applications with deferent methods and techniques depending on our inclusion and exclusion criteria. The taxonomy results were divided into three major classes; frameworks and models, systems (implemented or architecture), review and survey. Discussion: Fog computing is considered suitable for the applications that require real-time, low latency, and high response time, especially in healthcare applications. All these studies demonstrate that resource sharing provides low latency, better scalability, distributed processing, better security, fault tolerance, and privacy in order to present better fog infrastructure. Learned lessons: numerous lessons related to fog computing. Fog computing without a doubt decreased latency in contrast to cloud computing. Researchers show that simulation and experimental proportions ensure substantial reductions of latency is provided. Which it is very important for healthcare IoT systems due to real-time requirements. Conclusion: Research domains on fog computing in healthcare applications differ, yet they are equally important for the most parts. We conclude that this review will help accentuating research capabilities and consequently expanding and making extra research domains.
•The study explored the highlight problems, issues, and challenges of Fog computing in healthcare applications.•Performance evaluation of fog computing implementation in healthcare applications.•Numerous lessons related to fog computing. Fog computing without a doubt decreased latency in contrast to cloud computing. Researcher show that simulation and experimental proportions ensure substantial reductions of latency is provided. Which it is very important for healthcare IoT systems due to real-time requirements. |
|---|---|
| AbstractList | Context: A fog computing architecture that is geographically distributed and to which a variety of heterogeneous devices are ubiquitously connected at the end of a network in order to provide collaboratively variable and flexible communication, computation, and storage services. Fog computing has many advantages and it is suited for the applications whereby real-time, high response time, and low latency are of the utmost importance, especially healthcare applications. Objectives: The aim of this study was to present a systematic literature review of the technologies for fog computing in the healthcare IoT systems field and analyze the previous. Providing motivation, limitations faced by researchers, and suggestions proposed to analysts for improving this essential research field. Methods: The investigations were systematically performed on fog computing in the healthcare field by all studies; furthermore, the four databases Web of Science (WoS), ScienceDirect, IEEE Xplore Digital Library, and Scopus from 2007 to 2017 were used to analyze their architecture, applications, and performance evaluation. Results: A total of 99 articles were selected on fog computing in healthcare applications with deferent methods and techniques depending on our inclusion and exclusion criteria. The taxonomy results were divided into three major classes; frameworks and models, systems (implemented or architecture), review and survey. Discussion: Fog computing is considered suitable for the applications that require real-time, low latency, and high response time, especially in healthcare applications. All these studies demonstrate that resource sharing provides low latency, better scalability, distributed processing, better security, fault tolerance, and privacy in order to present better fog infrastructure. Learned lessons: numerous lessons related to fog computing. Fog computing without a doubt decreased latency in contrast to cloud computing. Researchers show that simulation and experimental proportions ensure substantial reductions of latency is provided. Which it is very important for healthcare IoT systems due to real-time requirements. Conclusion: Research domains on fog computing in healthcare applications differ, yet they are equally important for the most parts. We conclude that this review will help accentuating research capabilities and consequently expanding and making extra research domains.
•The study explored the highlight problems, issues, and challenges of Fog computing in healthcare applications.•Performance evaluation of fog computing implementation in healthcare applications.•Numerous lessons related to fog computing. Fog computing without a doubt decreased latency in contrast to cloud computing. Researcher show that simulation and experimental proportions ensure substantial reductions of latency is provided. Which it is very important for healthcare IoT systems due to real-time requirements. |
| Author | Mutlag, Ammar Awad Mohammed, Mazin Abed Abd Ghani, Mohd Khanapi Arunkumar, N. Mohd, Othman |
| Author_xml | – sequence: 1 givenname: Ammar Awad surname: Mutlag fullname: Mutlag, Ammar Awad email: ammar.awad14@gmail.com organization: Biomedical Computing and Engineering Technologies (BIOCORE) Applied Research Group, Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka, Malaysia – sequence: 2 givenname: Mohd Khanapi surname: Abd Ghani fullname: Abd Ghani, Mohd Khanapi email: khanapi@utem.edu.my organization: Biomedical Computing and Engineering Technologies (BIOCORE) Applied Research Group, Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka, Malaysia – sequence: 3 givenname: N. orcidid: 0000-0001-9719-4451 surname: Arunkumar fullname: Arunkumar, N. email: arun.nura@gmail.com organization: School of EEE, Sastra University, Thanjavur, India – sequence: 4 givenname: Mazin Abed surname: Mohammed fullname: Mohammed, Mazin Abed email: mazin_top_86@yahoo.com organization: Biomedical Computing and Engineering Technologies (BIOCORE) Applied Research Group, Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka, Malaysia – sequence: 5 givenname: Othman surname: Mohd fullname: Mohd, Othman email: mothman@utem.edu.my organization: Biomedical Computing and Engineering Technologies (BIOCORE) Applied Research Group, Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka, Malaysia |
| BookMark | eNqFkMtqwzAQRUVJoUnaP-jCP2BXY9mW3UUhhPQBgW5S6E4o0ihRcKQgKYX8fR3SVRftYpjF3HNhzoSMnHdIyD3QAig0D7vCHNMxYFFSaAvKC1p1V2QMLS9zDlCPyHiI8Zyz7vOGTGLcUUqBMxiT2cLJdW_dJkuots73fmMxZsaHYTaZ8vvDMZ3P1mVblH3aKhkwe_OrLJ5iwn28JddG9hHvfvaUfDwvVvPXfPn-8jafLXPFaJNy2XW6BqlrabqGV-saKqY1VkaWhrcatCklQCe1QcVqrSWrsUVNcc045Y1kU1JdelXwMQY04hDsXoaTACrOGsROXDSIswZBuRg0DNjjL0zZJJP1LgVp-__gpwuMw2NfFoOIyqJTqG1AlYT29u-Cb7USf_c |
| CitedBy_id | crossref_primary_10_1002_ett_4581 crossref_primary_10_3390_s20030889 crossref_primary_10_1007_s41870_022_01035_3 crossref_primary_10_1109_JBHI_2022_3178660 crossref_primary_10_32604_cmc_2020_012515 crossref_primary_10_1016_j_future_2020_07_023 crossref_primary_10_1016_j_jbi_2020_103383 crossref_primary_10_1016_j_comnet_2024_110240 crossref_primary_10_1108_JKM_03_2020_0224 crossref_primary_10_1109_COMST_2024_3405075 crossref_primary_10_1155_2021_6636898 crossref_primary_10_3390_s23115006 crossref_primary_10_1007_s11227_019_02928_0 crossref_primary_10_1186_s13673_020_00232_y crossref_primary_10_1016_j_technovation_2022_102558 crossref_primary_10_1016_j_techfore_2024_123781 crossref_primary_10_1016_j_adhoc_2024_103401 crossref_primary_10_1109_JIOT_2023_3242126 crossref_primary_10_1049_wss2_12100 crossref_primary_10_1155_2019_5931315 crossref_primary_10_1016_j_future_2018_10_018 crossref_primary_10_1002_dac_5049 crossref_primary_10_1016_j_measurement_2018_11_045 crossref_primary_10_1016_j_measurement_2018_11_046 crossref_primary_10_1016_j_comcom_2020_05_044 crossref_primary_10_1016_j_procs_2021_03_030 crossref_primary_10_1109_ACCESS_2021_3111130 crossref_primary_10_11648_j_ijefm_20251305_12 crossref_primary_10_1016_j_jnca_2021_103244 crossref_primary_10_3390_app13105860 crossref_primary_10_3390_s19163612 crossref_primary_10_3390_s21165430 crossref_primary_10_3390_s20092553 crossref_primary_10_3390_healthcare10020293 crossref_primary_10_1002_er_6774 crossref_primary_10_1155_2019_7329187 crossref_primary_10_1007_s11042_021_11125_2 crossref_primary_10_1007_s11277_022_09755_2 crossref_primary_10_3390_electronics12071511 crossref_primary_10_1007_s13369_022_06563_5 crossref_primary_10_1007_s11036_023_02202_x crossref_primary_10_1016_j_comnet_2022_108818 crossref_primary_10_1016_j_cose_2021_102353 crossref_primary_10_1016_j_procs_2020_10_050 crossref_primary_10_1080_17517575_2020_1820583 crossref_primary_10_3390_s20071853 crossref_primary_10_1109_ACCESS_2025_3596694 crossref_primary_10_1016_j_measurement_2018_11_073 crossref_primary_10_1016_j_suscom_2020_100454 crossref_primary_10_1016_j_jnca_2020_102784 crossref_primary_10_1109_ACCESS_2021_3066365 crossref_primary_10_3390_math9192522 crossref_primary_10_1016_j_procs_2019_12_138 crossref_primary_10_1109_ACCESS_2023_3281348 crossref_primary_10_1109_ACCESS_2020_2988854 crossref_primary_10_1016_j_simpat_2019_102021 crossref_primary_10_1109_ACCESS_2019_2947542 crossref_primary_10_1016_j_future_2019_01_035 crossref_primary_10_1016_j_jbi_2022_104009 crossref_primary_10_1080_1206212X_2023_2287257 crossref_primary_10_1111_exsy_13687 crossref_primary_10_1007_s11277_023_10817_2 crossref_primary_10_1109_ACCESS_2020_3045115 crossref_primary_10_1155_2021_5887911 crossref_primary_10_1109_ACCESS_2019_2950950 crossref_primary_10_1109_MNET_001_1900019 crossref_primary_10_1007_s11277_023_10168_y crossref_primary_10_1016_j_procs_2020_03_424 crossref_primary_10_1007_s11277_023_10624_9 crossref_primary_10_1002_spe_3439 crossref_primary_10_1109_ACCESS_2022_3225462 crossref_primary_10_32604_cmc_2020_013261 crossref_primary_10_3389_frai_2024_1354742 crossref_primary_10_1186_s13677_024_00689_7 crossref_primary_10_1109_ACCESS_2021_3117662 crossref_primary_10_1007_s00607_024_01371_1 crossref_primary_10_1016_j_micpro_2021_104025 crossref_primary_10_4018_IJCAC_297098 crossref_primary_10_1109_TPDS_2021_3087349 crossref_primary_10_1007_s12652_021_03007_0 crossref_primary_10_1080_17483107_2020_1817992 crossref_primary_10_4218_etrij_2020_0036 crossref_primary_10_1016_j_hlpt_2021_100552 crossref_primary_10_1155_2022_5337733 crossref_primary_10_1016_j_jii_2024_100739 crossref_primary_10_1007_s11277_021_08893_3 crossref_primary_10_1109_ACCESS_2021_3059858 crossref_primary_10_1002_ett_4897 crossref_primary_10_1007_s11227_020_03306_x crossref_primary_10_1016_j_adhoc_2024_103727 crossref_primary_10_3390_app12168232 crossref_primary_10_3390_s21124093 crossref_primary_10_1109_ACCESS_2019_2929915 crossref_primary_10_1016_j_comcom_2020_02_018 crossref_primary_10_3390_electronics9122015 crossref_primary_10_3390_s24165353 crossref_primary_10_3390_systems11020088 crossref_primary_10_1109_JIOT_2022_3175965 crossref_primary_10_3390_electronics10091077 crossref_primary_10_1109_ACCESS_2019_2936116 crossref_primary_10_1145_3539736 crossref_primary_10_1007_s10586_025_05234_y crossref_primary_10_1007_s11227_021_04135_2 crossref_primary_10_1016_j_comcom_2024_04_019 crossref_primary_10_1155_2020_3047869 crossref_primary_10_3389_fenvs_2022_996296 crossref_primary_10_1007_s11277_023_10664_1 crossref_primary_10_3390_s19051105 crossref_primary_10_1109_JIOT_2021_3135200 crossref_primary_10_1007_s12652_021_03302_w crossref_primary_10_1080_09537287_2019_1702226 crossref_primary_10_7717_peerj_cs_2269 crossref_primary_10_3390_fi12110190 crossref_primary_10_1109_ACCESS_2022_3143793 crossref_primary_10_3390_healthcare11040580 crossref_primary_10_1016_j_procs_2019_11_087 crossref_primary_10_1186_s40537_021_00507_w crossref_primary_10_1007_s11036_019_01430_4 crossref_primary_10_1155_2022_8421434 crossref_primary_10_1007_s10586_021_03333_0 crossref_primary_10_1002_cpe_4962 crossref_primary_10_4018_IJGHPC_304908 crossref_primary_10_1007_s10462_025_11342_3 crossref_primary_10_1007_s11277_023_10421_4 crossref_primary_10_36899_japs_2025_1_0002 crossref_primary_10_1007_s41870_022_00922_z crossref_primary_10_1016_j_comcom_2020_12_003 crossref_primary_10_3390_s19214807 crossref_primary_10_1007_s10723_020_09507_1 crossref_primary_10_1007_s00521_021_06240_y crossref_primary_10_1109_JIOT_2023_3297237 crossref_primary_10_3390_s23167095 crossref_primary_10_1109_IOTM_0001_2000005 crossref_primary_10_1007_s10776_020_00483_7 crossref_primary_10_32604_cmc_2020_013440 crossref_primary_10_32604_cmc_2023_038589 crossref_primary_10_1109_TNET_2021_3136157 crossref_primary_10_1016_j_future_2018_12_031 crossref_primary_10_1080_17517575_2021_1883122 crossref_primary_10_1007_s11042_023_16971_w crossref_primary_10_1016_j_aej_2025_05_005 crossref_primary_10_32604_cmc_2021_017647 crossref_primary_10_1016_j_sftr_2025_100761 crossref_primary_10_3390_computers12100198 crossref_primary_10_1016_j_future_2019_02_020 crossref_primary_10_1109_JIOT_2021_3139827 crossref_primary_10_1016_j_jpdc_2021_05_005 crossref_primary_10_1108_K_09_2019_0621 crossref_primary_10_1109_ACCESS_2024_3468015 crossref_primary_10_1109_JIOT_2022_3161935 crossref_primary_10_1007_s11227_018_2574_4 crossref_primary_10_1155_2022_7268571 crossref_primary_10_1155_2019_2786837 crossref_primary_10_1109_ACCESS_2023_3342190 crossref_primary_10_1007_s11831_020_09517_y crossref_primary_10_1007_s43926_023_00043_4 crossref_primary_10_1155_2019_1798391 crossref_primary_10_1016_j_egyr_2020_07_023 crossref_primary_10_1145_3571156 crossref_primary_10_4018_IJSSCI_285593 crossref_primary_10_48084_etasr_10048 crossref_primary_10_1109_COMST_2020_2973314 crossref_primary_10_32604_cmc_2021_016447 crossref_primary_10_1016_j_suscom_2021_100566 crossref_primary_10_3390_healthcare10071232 crossref_primary_10_3390_s21206923 crossref_primary_10_3390_s20226574 crossref_primary_10_1002_ett_4506 crossref_primary_10_1016_j_simpat_2020_102194 crossref_primary_10_1108_RPJ_09_2023_0332 crossref_primary_10_1109_ACCESS_2020_3011503 crossref_primary_10_1016_j_compeleceng_2021_107061 crossref_primary_10_3233_THC_213009 crossref_primary_10_33166_AETiC_2025_02_003 crossref_primary_10_1016_j_compeleceng_2019_05_013 crossref_primary_10_1016_j_future_2020_02_021 crossref_primary_10_32604_cmc_2021_018719 crossref_primary_10_1002_dac_5237 crossref_primary_10_1016_j_future_2020_02_025 crossref_primary_10_1016_j_comcom_2021_04_019 crossref_primary_10_1007_s00202_024_02575_6 crossref_primary_10_3390_electronics11193223 crossref_primary_10_3390_s19051023 crossref_primary_10_1007_s42979_021_00979_w crossref_primary_10_3233_THC_213011 crossref_primary_10_1016_j_future_2019_10_043 crossref_primary_10_1109_TNSM_2021_3103509 crossref_primary_10_1007_s11227_023_05847_3 crossref_primary_10_3390_s20185392 crossref_primary_10_1016_j_comcom_2023_12_016 crossref_primary_10_4018_IJIIT_2020040105 crossref_primary_10_1109_ACCESS_2020_3036811 crossref_primary_10_1109_JIOT_2020_3026493 crossref_primary_10_1080_17477778_2022_2072782 crossref_primary_10_1007_s11704_021_0537_z crossref_primary_10_1016_j_clscn_2022_100065 crossref_primary_10_1016_j_jnca_2020_102706 crossref_primary_10_32604_cmc_2020_012441 crossref_primary_10_1177_14604582221137453 crossref_primary_10_3390_fi11120259 crossref_primary_10_1007_s11276_023_03598_w crossref_primary_10_1109_ACCESS_2022_3159235 crossref_primary_10_3390_technologies7030058 crossref_primary_10_1016_j_rineng_2024_101949 crossref_primary_10_1109_ACCESS_2018_2872775 crossref_primary_10_1007_s10586_024_04502_7 crossref_primary_10_1007_s11227_020_03472_y crossref_primary_10_1080_01969722_2024_2343985 crossref_primary_10_1109_JIOT_2018_2876088 crossref_primary_10_1109_ACCESS_2020_2980739 crossref_primary_10_1109_ACCESS_2024_3525261 crossref_primary_10_1016_j_iot_2024_101135 crossref_primary_10_1007_s11227_022_04728_5 crossref_primary_10_1007_s12652_019_01481_1 crossref_primary_10_1038_s41598_025_04774_y crossref_primary_10_3390_electronics12030574 crossref_primary_10_1007_s41870_024_01742_z crossref_primary_10_1155_2019_6247094 crossref_primary_10_1007_s11036_022_01957_z crossref_primary_10_1080_1206212X_2018_1537095 crossref_primary_10_1155_2022_8741357 crossref_primary_10_1002_ett_4261 crossref_primary_10_1007_s11227_021_04176_7 crossref_primary_10_1016_j_future_2021_02_008 crossref_primary_10_1007_s10586_022_03554_x crossref_primary_10_3390_s22155894 crossref_primary_10_1002_int_22470 crossref_primary_10_1016_j_jnca_2021_103179 crossref_primary_10_1016_j_icte_2021_09_005 crossref_primary_10_3390_systems11100519 crossref_primary_10_1007_s11042_025_20759_5 crossref_primary_10_1002_ett_3606 crossref_primary_10_1002_cpe_6857 crossref_primary_10_1007_s13369_023_07896_5 crossref_primary_10_1007_s43926_025_00157_x crossref_primary_10_1016_j_comcom_2022_10_029 crossref_primary_10_2478_ausi_2021_0008 crossref_primary_10_1016_j_future_2022_10_005 crossref_primary_10_3390_s22124362 crossref_primary_10_1177_0020720918822742 crossref_primary_10_1016_j_matpr_2021_10_473 crossref_primary_10_1093_comjnl_bxaa005 crossref_primary_10_1155_2022_1070697 crossref_primary_10_1002_cpe_6163 crossref_primary_10_1007_s10723_023_09706_6 crossref_primary_10_1007_s11277_022_09474_8 crossref_primary_10_1109_ACCESS_2020_2974687 crossref_primary_10_1007_s11227_022_04729_4 crossref_primary_10_1002_ett_3738 crossref_primary_10_3390_electronics8070768 crossref_primary_10_1002_dac_4683 crossref_primary_10_1016_j_artmed_2022_102431 crossref_primary_10_1007_s00607_021_00979_x crossref_primary_10_1007_s00779_021_01584_7 crossref_primary_10_1016_j_iot_2023_100721 crossref_primary_10_1109_JSEN_2022_3141064 crossref_primary_10_1155_2021_5599907 crossref_primary_10_1109_TSC_2022_3206770 crossref_primary_10_3390_su15031862 crossref_primary_10_1109_TII_2020_3001067 crossref_primary_10_3390_s21020359 crossref_primary_10_1016_j_comcom_2021_11_005 crossref_primary_10_1109_TSC_2024_3506473 crossref_primary_10_1016_j_iot_2025_101761 crossref_primary_10_1007_s11227_024_06629_1 crossref_primary_10_1093_comjnl_bxac192 crossref_primary_10_32604_cmc_2021_016342 crossref_primary_10_1007_s11227_021_04263_9 crossref_primary_10_1016_j_cose_2020_101938 crossref_primary_10_3390_bdcc5010010 crossref_primary_10_4018_IJICTHD_2019070103 crossref_primary_10_1007_s10586_021_03265_9 crossref_primary_10_3390_iot2010006 crossref_primary_10_1007_s11063_020_10416_3 crossref_primary_10_1109_JIOT_2020_3012617 crossref_primary_10_1109_JBHI_2021_3106387 crossref_primary_10_1002_ett_4057 crossref_primary_10_1049_wss2_12011 crossref_primary_10_1002_cpe_7155 crossref_primary_10_1038_s41598_024_71506_z crossref_primary_10_1109_ACCESS_2024_3380906 crossref_primary_10_1002_cpe_6622 crossref_primary_10_1016_j_scs_2021_103079 crossref_primary_10_3390_computers14030099 crossref_primary_10_1007_s00500_018_3618_7 crossref_primary_10_1007_s10586_022_03565_8 crossref_primary_10_1109_JSEN_2022_3170055 crossref_primary_10_1051_bioconf_20249700085 crossref_primary_10_1109_JIOT_2019_2931647 crossref_primary_10_1007_s11042_021_10840_0 crossref_primary_10_1016_j_future_2019_05_059 crossref_primary_10_1007_s11280_019_00722_9 crossref_primary_10_1016_j_iot_2023_100866 crossref_primary_10_3390_healthcare10101940 crossref_primary_10_1002_dac_4340 |
| Cites_doi | 10.1109/JIOT.2016.2579198 10.1109/IC2E.2014.34 10.1109/ACCESS.2017.2682499 10.1109/TELSKS.2015.7357752 10.1109/GIOTS.2017.8016218 10.1109/IIKI.2014.60 10.1109/HotWeb.2015.22 10.1109/ACCESS.2017.2692960 10.1109/NORCHIP.2016.7792890 10.1109/COMST.2015.2444095 10.1109/PATMOS.2017.8106984 10.1109/ICCNC.2017.7876242 10.1016/j.future.2017.09.016 10.1109/CC.2017.8233646 10.1016/j.adhoc.2017.09.002 10.1109/ACCESS.2016.2631546 10.1109/FiCloud.2014.83 10.1109/NAS.2015.7255196 10.1016/j.eswa.2017.05.034 10.1016/j.ijmedinf.2018.02.001 10.1016/j.future.2017.02.032 10.1016/j.future.2018.07.022 10.1109/MIPRO.2016.7522176 10.1109/CloudCom.2016.0081 10.1016/j.jocs.2018.02.002 10.1016/j.jocs.2017.03.009 10.1109/Ubi-HealthTech.2015.7203325 10.1109/CCNC.2017.7983103 10.1109/COMST.2017.2691349 10.1109/MPOT.2015.2456213 10.1109/SMARTCOMP.2017.7947010 10.1016/j.future.2018.03.048 10.1109/IWCMC.2017.7986551 10.1109/CCECE.2017.7946780 10.1016/j.future.2018.02.009 10.1109/ICC.2016.7511146 10.1109/EMBC.2017.8037330 10.1016/j.future.2017.03.018 10.1109/VTCFall.2015.7391144 10.1109/ACCESS.2017.2757844 10.1109/DSDIS.2015.21 10.1007/s12668-016-0388-5 10.1016/j.compeleceng.2018.01.033 10.1109/PERCOMW.2015.7134091 10.1109/FAS-W.2017.142 10.1109/MASS.2016.065 10.1016/j.jocs.2017.03.026 10.1016/j.future.2017.02.014 10.1109/ACCESS.2017.2739804 10.1016/j.compeleceng.2018.04.014 10.1109/ISCC.2017.8024513 10.1109/HealthCom.2016.7749460 10.1109/IWCMC.2016.7577055 10.1016/j.jocs.2017.04.012 10.1109/MIC.2017.2911430 10.1109/FiCloud.2014.14 10.1016/j.future.2016.02.020 10.1109/ICECOS.2017.8167139 10.1109/APNOMS.2015.7275445 10.1109/WoWMoM.2017.7974338 10.1145/2757384.2757398 10.1109/IEDM.2016.7838027 10.1145/3154273.3154347 10.1016/j.future.2015.09.021 10.1109/AINA.2015.254 10.1145/2492348.2492354 10.1109/CIT/IUCC/DASC/PICOM.2015.51 10.1016/j.comnet.2017.10.002 10.1007/978-3-319-57639-8_8 10.1016/j.jocs.2017.03.021 10.1109/RTSI.2017.8065939 10.1007/s12243-016-0496-9 10.1109/COMPSAC.2017.178 10.1109/ACCESS.2018.2817615 10.1007/978-3-319-68179-5_32 10.1109/HealthCom.2017.8210825 10.1109/MCC.2016.118 10.1093/comjnl/bxx019 10.1109/IWBIS.2016.7872884 10.1016/j.future.2017.04.036 10.1109/CIACT.2017.7977361 10.1109/ISADS.2017.56 10.1007/s10916-018-0912-y 10.1109/LCN.Workshops.2017.73 10.1109/SYSMART.2016.7894538 10.1016/j.jnca.2017.09.002 10.1109/W-FiCloud.2016.36 10.1109/MCE.2017.2684981 10.1109/WCNCW.2016.7552676 10.1016/j.compind.2017.05.006 10.1016/j.jocs.2017.04.006 10.1016/j.patrec.2017.02.005 10.1145/2818869.2818889 10.1109/SOSE.2017.27 10.1007/s11227-016-1634-x 10.1007/978-3-319-64063-1_4 10.3390/bdcc2020010 10.1109/HotWeb.2016.12 10.1109/ATNAC.2015.7366831 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. |
| Copyright_xml | – notice: 2018 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.future.2018.07.049 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7115 |
| EndPage | 78 |
| ExternalDocumentID | 10_1016_j_future_2018_07_049 S0167739X18314006 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-a99d51ad5af9674b5143dde4fa2f78d1df2a119adfec35dda35e8ed0eb37076a3 |
| ISICitedReferencesCount | 341 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446283600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-739X |
| IngestDate | Sat Nov 29 07:26:55 EST 2025 Tue Nov 18 22:16:25 EST 2025 Fri Feb 23 02:45:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fog computing Cloud computing Healthcare applications Shared nodes Smart gateways Shared resources Edge computing Systematic literature review |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-a99d51ad5af9674b5143dde4fa2f78d1df2a119adfec35dda35e8ed0eb37076a3 |
| ORCID | 0000-0001-9719-4451 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1016_j_future_2018_07_049 crossref_citationtrail_10_1016_j_future_2018_07_049 elsevier_sciencedirect_doi_10_1016_j_future_2018_07_049 |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 2019-01-00 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Future generation computer systems |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | A. Botta, W. De Donato, V. Persico, A. Pescape, On the integration of cloud computing and Internet of Things, in: Proc. - 2014 Int. Conf. Futur. Internet Things Cloud, FiCloud 2014, 2014, pp. 23–30. Liu, Deng, Yang, Tran, Zhong (b73) 2017; 78 M. and Maksimović, Improving computing issues in Internet of Things driven e-health systems, Vol. 1852. CEUR-WS, 2017, pp. 14–17. F.T. Zohora, M.R.R. Khan, M.F.R. Bhuiyan, A.K. Das, Enhancing the capabilities of IoT based fog and cloud infrastructures for time sensitive events, in: ICECOS 2017 - Proceeding 2017 Int. Conf. Electr. Eng. Comput. Sci. Sustain. Cult. Herit. Towar. Smart Environ. Better Futur., 2017, pp. 224–230. Etemad, Aazam, St-Hilaire (b89) 2017 K. Bilal, S. Ur, R. Malik, S.U. Khan, Trends and Challenges in Cloud Datacenters, 2016. Ghani, Mohammed, Ibrahim, Mostafa, Ibrahim (b146) 2017; 95 Fernandes, Gurupur, Sunder, Arunkumar, Kadry (b151) 2017 I. Azimi, A. Anzanpour, A.M. Rahmani, P. Liljeberg, T. Salakoski, Medical warning system based on Internet of Things using fog computing, in: 2016 Int. Work. Big Data Inf. Secur. IWBIS 2016, 2017, pp. 19–24. He, Cheng, Wang, Huang, Chen (b86) 2017; 14 P. Garraghan, T. Lin, M. Rovatsos, Fog Orchestration for Internet of Things Services, 2017. H. Zhang, Y. Xiao, S. Bu, D. Niyato, R. Yu, Z. Han, Fog Computing in Multi-Tier Data Center Networks : A Hierarchical Game Approach, 2016, pp. 1–6. Cao, Chen, Hou, Brown (b79) 2015 Hu, Dhelim, Ning, Qiu (b5) 2017 Farris, Orsino, Militano, Iera, Araniti (b74) 2017; 68 Osanaiye, Chen, Yan, Lu, Choo, Dlodlo (b114) 2017; 5 Mohammed, Ghani, Hamed, Abdullah, Ibrahim (b135) 2017; 20 M. Abu-Elkheir, H.S. Hassanein, S.M.A. Oteafy, Enhancing emergency response systems through leveraging crowdsensing and heterogeneous data, in: 2016 Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2016, 2016, pp. 188–193. Nastic (b68) 2017; 21 A. Rajagopalan, M. Jagga, A. Kumari, S.T. Ali, A DDoS prevention scheme for session resumption SEA architecture in healthcare IoT, in: 3rd IEEE Int. Conf., 2017, pp. 1–5. Craciunescu, Mihovska, Mihaylov, Kyriazakos, Prasad, Halunga (b125) 2016 Mohammed, Ghani, Hamed, Ibrahim (b19) 2017; 21 S. Chakraborty, S. Bhowmick, P. Talaga, D.P. Agrawal, Fog networks in healthcare application, in: Proc. - 2016 IEEE 13th Int. Conf. Mob. Ad Hoc Sens. Syst. MASS 2016, 2016, pp. 386–387. O. Fratu, C. Pena, R. Craciunescu, S. Halunga, Fog computing system for monitoring Mild Dementia and COPD patients - Romanian case study, in: 2015 12th Int. Conf. Telecommun. Mod. Satell. Cable Broadcast. Serv. TELSIKS 2015, 2015, pp. 123–128. B. Negash, et al., Leveraging fog computing for healthcare IoT, in: Fog Computing in the Internet of Things: Intelligence at the Edge, 2017, pp. 145–169. Ramalho, Neto, Santos, Filho, Agoulmine (b126) 2016 J. Oueis, E.C. Strinati, S. Sardellitti, S. Barbarossa, Small cell clustering for efficient distributed fog computing: A multi-user case, in: 2015 IEEE 82nd Vehicular Technology Conference, VTC2015-Fall, 2015, pp. 1–5. Elhoseny, Ramírez-González, Abu-Elnasr, Shawkat, Arunkumar, Ahmed farouk (b139) 2018 Abdulhay, Mohammed, Ibrahim, Arunkumar, Venkatraman (b143) 2018; 42 R. Mahmud, F.L. Koch, R. Buyya, Cloud-fog interoperability in IoT-enabled healthcare solutions, in: Proc. 19th Int. Conf. Distrib. Comput. Netw. - ICDCN’18, 2018, pp. 1–10. Hu, Dhelim, Ning, Qiu (b124) 2017; 98 Wang, Wang, Domingo-Ferrer (b95) 2017; 78 Escamilla-Ambrosio, Rodríguez-Mota, Aguirre-Anaya, Acosta-Bermejo, Salinas-Rosales (b11) 2018; 731 Kraemer, Braten, Tamkittikhun, Palma (b16) 2017 J. Chaudhry, K. Saleem, R. Islam, A. Selamat, M. Ahmad, C. Valli, AZSPM: Autonomic zero-knowledge security provisioning model for medical control systems in fog computing environments, in: 2017 IEEE 42nd Conf. Local Comput. Networks Work. LCN Work., 2017, pp. 121–127. A. Al-fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of Things Distefano, Bruneo, Longo, Merlino, Puliafito (b40) 2017 J. Vora, S. Tanwar, S. Tyagi, N. Kumar, J.J.P.C. Rodrigues, FAAL: Fog computing-based patient monitoring system for ambient assisted living, in: 2017 IEEE 19th Int. Conf. e-Health Networking, Appl. Serv., 2017, pp. 1–6. Mubeen, Nikolaidis, DIdic, Pei-Breivold, Sandstrom, Behnam (b1) 2017; 5 Manogaran, Varatharajan, Lopez, Kumar, Sundarasekar, Thota (b94) 2017 Gharaibeh (b111) 2017; X Y. Cao, S. Chen, P. Hou, D. Brown, FAST: A fog computing assisted distributed analytics system to monitor fall for stroke mitigation, in: Proc. 2015 IEEE Int. Conf. Networking, Archit. Storage, NAS 2015, 2015, pp. 2–11. Nandyala, Kim (b78) 2016 A case study on ECG feature extraction, in: IEEE Int. Conf. Data Min. Work. ICDMW, 2015, pp. 356–363. Shi, Cao, Zhang, Li, Xu (b102) 2016; 3 W. You, W. Learn, Fog Computing and the Internet of Things : Extend the Cloud to Where the Things Are, 2015, pp. 1–6. P. Kumari, M. Lopez-Benitez, G.M. Lee, T.S. Kim, A.S. Minhas, Wearable Internet of Things - From human activity tracking to clinical integration, in: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 2017, pp. 2361–2364. Sood, Mahajan (b80) 2017 Q. Zhang, X. Zhang, Q. Zhang, W. Shi, H. Zhong, Firework: Big data sharing and processing in collaborative edge environment, in: Proc. - 4th IEEE Work. Hot Top. Web Syst. Technol. HotWeb 2016, 2016, pp. 20–25. Gupta, Sundaram, Khanna, Ella Hassanien, De Albuquerque (b134) 2018; 68 Distefano, Bruneo, Longo, Merlino, Puliafito (b47) 2017; 7 Bibani (b77) 2017 Garcia-de Prado, Ortiz, Boubeta-Puig (b101) 2017; 85 L. Cerina, S. Notargiacomo, M.G. Paccanit, M.D. Santambrogio, A fog-computing architecture for preventive healthcare and assisted living in smart ambients, in: RTSI 2017 - IEEE 3rd Int. Forum Res. Technol. Soc. Ind. Conf. Proc., 2017. Mohammed, Ghani, Hamed, Mostafa, Ibrahim, Jameel, Alallah (b144) 2017; 21 Arunkumar, Ramkumar, Venkatraman (b145) 2018 Mohammed, Ghani, Arunkumar, Hamed, Abdullah, Burhanuddin (b129) 2018 S. Yi, Z. Hao, Z. Qin, Q. Li, Fog computing: Platform and applications, in: Proc. - 3rd Work. Hot Top. Web Syst. Technol. HotWeb 2015, 2015, pp. 73–78. Bilal, Khalid, Erbad, Khan (b10) 2017; 130 O. Ferrer-Roca, R. Tous, R. Milito, Big and small data: The fog, in: 2014 Int. Conf. Identification, Inf. Knowl. Internet Things, 2014, pp. 260–261. T. Nishio, R. Shinkuma, T. Takahashi, N.B. Mandayam, Service-oriented heterogeneous resource sharing for optimizing service latency in mobile cloud, in: Proceedings of the first international workshop on Mobile cloud computing & networking - MobileCloud’13, 2013, p. 19. A. Kliem, O. Kao, The internet of things resource management challenge, in: 2015 IEEE Int. Conf. Data Sci. Data Intensive Syst., 2015, pp. 483–490. Elmisery, Rho, Botvich (b34) 2016; 4 Mohammed (b141) 2018 O. Bibani, et al., A Demo of IoT Healthcare Application Provisioning in Hybrid Cloud / Fog Environment, no. October 2017, 2016. Wei, Meng, Arunkumar (b138) 2018 Moosavi (b28) 2016; 64 Al Hamid, Rahman, Hossain, Almogren, Alamri (b43) 2017 Rahman, Hassanain (b39) 2017; 5 Aazam, Huh (b45) 2015 W. Wang, S. De, Y. Zhou, X. Huang, K. Moessner, Distributed sensor data computing in smart city applications, in; 18th IEEE Int. Symp. A World Wireless, Mob. Multimed. Networks, WoWMoM 2017 - Conf., 2017. M. Simsek, A. Aijaz, M. Dohler, J. Sachs, G. Fettweis, The 5G-enabled tactile internet: Applications, requirements, and architecture, in: 2016 IEEE Wirel. Commun. Netw. Conf. Work. WCNCW 2016, Vol. 8716, No. c, 2016, pp. 61–66. Rahmani (b14) 2018; 78 Althebyan, Yaseen, Jararweh, Al-Ayyoub (b99) 2016; 71 T. Nguyen Gia, et al., Low-cost fog-assisted health-care IoT system with energy-efficient sensor nodes, in: 2017 13th Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2017, 2017, pp. 1765–1770. Mohammed, Ghani, Hamed, Ibrahim, Abdullah (b131) 2017; 21 Li, Yu, Deng, Luo, Ming, Yan (b116) 2017; 19 Y. Cao, P. Hou, D. Brown, J. Wang, S. Chen, Distributed analytics and edge intelligence, in: Proc. 2015 Work. Mob. Big Data - Mobidata ’15, 2015, pp. 43–48. Firouzi (b121) 2018; 78 Vardhana, Arunkumar, Abdulhay (b142) 2018 Monteiro, Dubey, Mahler, Yang (b58) 2016 C. Puliafito, E. Mingozzi, G. Anastasi, Fog computing for the internet of mobile things: Issues and challenges, in: 2017 IEEE Int. Conf. Smart Comput. 2017, pp. 1–6. Elmisery, Rho, Aborizka (b103) 2017 Dastjerdi, Buyya (b115) 2016; 49 Elmisery, Rho, Aborizka (b3) 2017 S. Ali, M. Ghazal, Real-time heart attack mobile detection service (RHAMDS): An IoT use case for software defined networks, in: Can. Conf. Electr. Comput. Eng. 2017. M. Aazam, E.N. Huh, E-HAMC: Leveraging Fog computing for emergency alert service, in: 2015 IEEE Int. Conf. Pervasive Comput. Commun. Work. PerCom Work. 2015, 2015, pp. 518–523. Abbas, Zhang, Taherkordi, Skeie (b108) 2017; 4662 Jararweh (b37) 2017 C. Pahl, S. Helmer, L. Miori, J. Sanin, B. Lee, A container-based edge cloud PaaS architecture based on raspberry Pi clusters, in: Proc. - 2016 4th Int. Conf. Futur. Internet Things Cloud Work. W-FiCloud 2016, 2016, pp. 117–124. Gusev, Guseva (b113) 2017 Lubamba, Bagula (b60) 2017 C. Dupont, R. Giaffreda, L. Capra, Edge computing in IoT context: Horizontal and vertical Linux container migration, in: GIoTS 2017 - Glob. Internet Things Summit, Proc., 2017, pp. 2–5. Baktir, Ozgovde, Ersoy (b105) 2017 Botta, De Donato, Persico, Pescapé (b122) 2016; 56 Mostafa, Mustapha, Khaleefah, Ahmad, Mohammed (b133) 2018 D.W. McKee, S.J. Clement, J. Almutairi, J. Xu, Massive-scale automation in cyber-physical systems: Vision & challenges, in: Proc. - 2017 IEEE 13th Int. Symp. Auton. Decentralized Syst. ISADS 2017, 2017, pp. 5–11. Nikoloudakis (b70) 2016; 3 Gia, Jiang, Rahmani, Westerlund, Liljeberg, Tenhunen (b55) 2015 Atlam, Walters, Wills (b29) 2018; 2 El-Sayed (b149) 2017 Abdulhay, Arunkumar, Narasimhan, Vellaiappan, Venkatraman (b140) 2018; 83 Munir, Kansakar, Khan (b17) 2017; 6 M. Ryden, K. Oh, A. Chandra, J. Weissman, Nebula: Distributed edge cloud for data intensive computing, in: 2014 IEEE Int. Conf. Cloud Eng., 2014, pp. 57–66. Singh, Tripathi, Alberti, Jara (b54) 2017 Arunkumar (10.1016/j.future.2018.07.049_b145) 2018 Wei (10.1016/j.future.2018.07.049_b138) 2018 10.1016/j.future.2018.07.049_b150 Gharaibeh (10.1016/j.future.2018.07.049_b111) 2017; X Elmisery (10.1016/j.future.2018.07.049_b34) 2016; 4 Osanaiye (10.1016/j.future.2018.07.049_b114) 2017; 5 Sahni (10.1016/j.future.2018.07.049_b31) 2017; 5 Jararweh (10.1016/j.future.2018.07.049_b37) 2017 Nastic (10.1016/j.future.2018.07.049_b68) 2017; 21 Farahani (10.1016/j.future.2018.07.049_b123) 2018; 78 10.1016/j.future.2018.07.049_b71 10.1016/j.future.2018.07.049_b76 Manogaran (10.1016/j.future.2018.07.049_b72) 2017 10.1016/j.future.2018.07.049_b75 Firouzi (10.1016/j.future.2018.07.049_b121) 2018; 78 Mostafa (10.1016/j.future.2018.07.049_b133) 2018 Ahmad (10.1016/j.future.2018.07.049_b21) 2016; 72 Nikoloudakis (10.1016/j.future.2018.07.049_b70) 2016; 3 Srinivas (10.1016/j.future.2018.07.049_b100) 2017; 12 Escamilla-Ambrosio (10.1016/j.future.2018.07.049_b11) 2018; 731 Sood (10.1016/j.future.2018.07.049_b25) 2017; 91 10.1016/j.future.2018.07.049_b147 Munir (10.1016/j.future.2018.07.049_b17) 2017; 6 Rahman (10.1016/j.future.2018.07.049_b39) 2017; 5 Botta (10.1016/j.future.2018.07.049_b122) 2016; 56 10.1016/j.future.2018.07.049_b61 10.1016/j.future.2018.07.049_b62 Hossain (10.1016/j.future.2018.07.049_b83) 2017 10.1016/j.future.2018.07.049_b65 10.1016/j.future.2018.07.049_b66 10.1016/j.future.2018.07.049_b63 10.1016/j.future.2018.07.049_b64 10.1016/j.future.2018.07.049_b69 10.1016/j.future.2018.07.049_b67 Gupta (10.1016/j.future.2018.07.049_b134) 2018; 68 Abdulhay (10.1016/j.future.2018.07.049_b140) 2018; 83 Abdulhay (10.1016/j.future.2018.07.049_b143) 2018; 42 Mohammed (10.1016/j.future.2018.07.049_b135) 2017; 20 Mostafa (10.1016/j.future.2018.07.049_b137) 2018; 112 Rahmani (10.1016/j.future.2018.07.049_b30) 2017 Nandyala (10.1016/j.future.2018.07.049_b78) 2016 Hu (10.1016/j.future.2018.07.049_b5) 2017 He (10.1016/j.future.2018.07.049_b86) 2017; 14 Gia (10.1016/j.future.2018.07.049_b55) 2015 Rahmani (10.1016/j.future.2018.07.049_b14) 2018; 78 Aazam (10.1016/j.future.2018.07.049_b45) 2015 Shi (10.1016/j.future.2018.07.049_b102) 2016; 3 10.1016/j.future.2018.07.049_b50 10.1016/j.future.2018.07.049_b51 Sood (10.1016/j.future.2018.07.049_b98) 2017; 4662 Althebyan (10.1016/j.future.2018.07.049_b81) 2016 10.1016/j.future.2018.07.049_b52 10.1016/j.future.2018.07.049_b53 10.1016/j.future.2018.07.049_b56 10.1016/j.future.2018.07.049_b57 10.1016/j.future.2018.07.049_b127 Bilal (10.1016/j.future.2018.07.049_b10) 2017; 130 Mohammed (10.1016/j.future.2018.07.049_b144) 2017; 21 Abbas (10.1016/j.future.2018.07.049_b108) 2017; 4662 10.1016/j.future.2018.07.049_b120 Gusev (10.1016/j.future.2018.07.049_b113) 2017 Craciunescu (10.1016/j.future.2018.07.049_b125) 2016 Elhoseny (10.1016/j.future.2018.07.049_b139) 2018 Etemad (10.1016/j.future.2018.07.049_b89) 2017 Ni (10.1016/j.future.2018.07.049_b128) 2017 Wang (10.1016/j.future.2018.07.049_b95) 2017; 78 Baktir (10.1016/j.future.2018.07.049_b105) 2017 10.1016/j.future.2018.07.049_b41 10.1016/j.future.2018.07.049_b42 Bibani (10.1016/j.future.2018.07.049_b77) 2017 Vardhana (10.1016/j.future.2018.07.049_b142) 2018 Farris (10.1016/j.future.2018.07.049_b74) 2017; 68 10.1016/j.future.2018.07.049_b48 Lubamba (10.1016/j.future.2018.07.049_b60) 2017 Distefano (10.1016/j.future.2018.07.049_b40) 2017 Monteiro (10.1016/j.future.2018.07.049_b58) 2016 Mohammed (10.1016/j.future.2018.07.049_b129) 2018 Elmisery (10.1016/j.future.2018.07.049_b103) 2017 Mohammed (10.1016/j.future.2018.07.049_b19) 2017; 21 Srinivas (10.1016/j.future.2018.07.049_b84) 2017 Ahmad (10.1016/j.future.2018.07.049_b12) 2016 Liu (10.1016/j.future.2018.07.049_b73) 2017; 78 Li (10.1016/j.future.2018.07.049_b116) 2017; 19 10.1016/j.future.2018.07.049_b32 Distefano (10.1016/j.future.2018.07.049_b47) 2017; 7 10.1016/j.future.2018.07.049_b33 Atlam (10.1016/j.future.2018.07.049_b29) 2018; 2 10.1016/j.future.2018.07.049_b36 10.1016/j.future.2018.07.049_b35 Wu (10.1016/j.future.2018.07.049_b44) 2017 10.1016/j.future.2018.07.049_b109 Rebouças Filho (10.1016/j.future.2018.07.049_b132) 2017; 94 Sood (10.1016/j.future.2018.07.049_b80) 2017 10.1016/j.future.2018.07.049_b38 10.1016/j.future.2018.07.049_b107 10.1016/j.future.2018.07.049_b106 10.1016/j.future.2018.07.049_b104 Songqing Chen (10.1016/j.future.2018.07.049_b49) 2017 Mohammed (10.1016/j.future.2018.07.049_b131) 2017; 21 Rodrigues (10.1016/j.future.2018.07.049_b136) 2018; 1 Mohammed (10.1016/j.future.2018.07.049_b18) 2017; 21 Garcia-de Prado (10.1016/j.future.2018.07.049_b101) 2017; 85 Elmisery (10.1016/j.future.2018.07.049_b3) 2017 Aazam (10.1016/j.future.2018.07.049_b7) 2016; 35 10.1016/j.future.2018.07.049_b22 Dastjerdi (10.1016/j.future.2018.07.049_b115) 2016; 49 10.1016/j.future.2018.07.049_b20 10.1016/j.future.2018.07.049_b26 10.1016/j.future.2018.07.049_b23 10.1016/j.future.2018.07.049_b24 Masip-Bruin (10.1016/j.future.2018.07.049_b148) 2016 10.1016/j.future.2018.07.049_b119 Mohammed (10.1016/j.future.2018.07.049_b141) 2018 10.1016/j.future.2018.07.049_b27 10.1016/j.future.2018.07.049_b118 Ghani (10.1016/j.future.2018.07.049_b146) 2017; 95 10.1016/j.future.2018.07.049_b117 Al Hamid (10.1016/j.future.2018.07.049_b43) 2017 El-Sayed (10.1016/j.future.2018.07.049_b149) 2017 10.1016/j.future.2018.07.049_b112 10.1016/j.future.2018.07.049_b110 Azimi (10.1016/j.future.2018.07.049_b82) 2017; 16 Manogaran (10.1016/j.future.2018.07.049_b94) 2017 Singh (10.1016/j.future.2018.07.049_b54) 2017 10.1016/j.future.2018.07.049_b90 10.1016/j.future.2018.07.049_b91 Mouradian (10.1016/j.future.2018.07.049_b15) 2017 10.1016/j.future.2018.07.049_b92 10.1016/j.future.2018.07.049_b93 10.1016/j.future.2018.07.049_b96 10.1016/j.future.2018.07.049_b97 10.1016/j.future.2018.07.049_b9 10.1016/j.future.2018.07.049_b8 Moosavi (10.1016/j.future.2018.07.049_b28) 2016; 64 Hu (10.1016/j.future.2018.07.049_b124) 2017; 98 10.1016/j.future.2018.07.049_b13 Ramalho (10.1016/j.future.2018.07.049_b126) 2016 Jararweh (10.1016/j.future.2018.07.049_b46) 2017; 60 10.1016/j.future.2018.07.049_b2 Cao (10.1016/j.future.2018.07.049_b79) 2015 10.1016/j.future.2018.07.049_b6 Mohammed (10.1016/j.future.2018.07.049_b130) 2018 10.1016/j.future.2018.07.049_b4 Kraemer (10.1016/j.future.2018.07.049_b16) 2017 10.1016/j.future.2018.07.049_b87 10.1016/j.future.2018.07.049_b88 10.1016/j.future.2018.07.049_b85 Aazam (10.1016/j.future.2018.07.049_b59) 2015 Fernandes (10.1016/j.future.2018.07.049_b151) 2017 Mubeen (10.1016/j.future.2018.07.049_b1) 2017; 5 Althebyan (10.1016/j.future.2018.07.049_b99) 2016; 71 |
| References_xml | – reference: O. Fratu, C. Pena, R. Craciunescu, S. Halunga, Fog computing system for monitoring Mild Dementia and COPD patients - Romanian case study, in: 2015 12th Int. Conf. Telecommun. Mod. Satell. Cable Broadcast. Serv. TELSIKS 2015, 2015, pp. 123–128. – reference: T. Nguyen Gia, et al., Low-cost fog-assisted health-care IoT system with energy-efficient sensor nodes, in: 2017 13th Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2017, 2017, pp. 1765–1770. – year: 2017 ident: b15 article-title: A comprehensive survey on fog computing: State-of-the-art and research challenges publication-title: IEEE Commun. Surv. Tutor. – reference: M.N. Semeria, Symbiotic low-power, smart and secure technologies in the age of hyperconnectivity, in: Tech. Dig. - Int. Electron Devices Meet. IEDM, 2017, p. 1.3.1–1.3.14. – reference: P. Kumari, M. Lopez-Benitez, G.M. Lee, T.S. Kim, A.S. Minhas, Wearable Internet of Things - From human activity tracking to clinical integration, in: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 2017, pp. 2361–2364. – reference: T. Nguyen Gia, et al., Low-cost fog-assisted health-care IoT system with energy-efficient sensor nodes, in: 2017 13th Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2017, no. June, 2017, pp. 1765–1770. – start-page: 3677 year: 2016 end-page: 3695 ident: b12 article-title: Health Fog: A Novel Framework for Health and Wellness Applications, Vol. 72, No. 10 – volume: 4 start-page: 8418 year: 2016 end-page: 8441 ident: b34 article-title: A fog based middleware for automated compliance with OECD privacy principles in internet of healthcare things publication-title: IEEE Access – volume: 5 start-page: 8284 year: 2017 end-page: 8300 ident: b114 article-title: From cloud to fog computing: A review and a conceptual live VM migration framework publication-title: IEEE Access – reference: W. You, W. Learn, Fog Computing and the Internet of Things : Extend the Cloud to Where the Things Are, 2015, pp. 1–6. – reference: : A Survey on Enabling Technologies , Protocols and Applications, Vol. 17, no. JANUARY, 2015, pp. 2347–2376. – volume: 12 start-page: 3914 year: 2017 end-page: 3919 ident: b100 article-title: Data driven techniques for neutralizing authentication and integrity issues in cloud publication-title: ARPN J. Eng. Appl. Sci. – volume: 3 start-page: 637 year: 2016 end-page: 646 ident: b102 article-title: Edge computing: Vision and challenges publication-title: IEEE Internet Things J. – reference: S. Ali, M. Ghazal, Real-time heart attack mobile detection service (RHAMDS): An IoT use case for software defined networks, in: Can. Conf. Electr. Comput. Eng. 2017. – reference: J. Chaudhry, K. Saleem, R. Islam, A. Selamat, M. Ahmad, C. Valli, AZSPM: Autonomic zero-knowledge security provisioning model for medical control systems in fog computing environments, in: 2017 IEEE 42nd Conf. Local Comput. Networks Work. LCN Work., 2017, pp. 121–127. – start-page: 9206 year: 2017 end-page: 9222 ident: b16 article-title: Fog Computing in Healthcare-A Review and Discussion, Vol. 5 – year: 2018 ident: b139 article-title: Secure medical data transmission model for IoT-based healthcare systems publication-title: IEEE Access – volume: 78 start-page: 659 year: 2018 end-page: 676 ident: b123 article-title: Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare publication-title: Future Gener. Comput. Syst. – reference: Y. Shi, G. Ding, H. Wang, H.E. Roman, S. Lu, The fog computing service for healthcare, in: 2015 2nd Int. Symp. Futur. Inf. Commun. Technol. Ubiquitous Healthc. 2015, pp. 1–5. – volume: 98 start-page: 27 year: 2017 end-page: 42 ident: b124 article-title: Survey on fog computing: architecture, key technologies, applications and open issues publication-title: J. Netw. Comput. Appl. – volume: 35 start-page: 40 year: 2016 end-page: 44 ident: b7 article-title: Fog computing: The Cloud-IoT/IoE middleware paradigm publication-title: IEEE Potentials – reference: Q. Zhang, X. Zhang, Q. Zhang, W. Shi, H. Zhong, Firework: Big data sharing and processing in collaborative edge environment, in: Proc. - 4th IEEE Work. Hot Top. Web Syst. Technol. HotWeb 2016, 2016, pp. 20–25. – start-page: 1 year: 2017 end-page: 28 ident: b103 article-title: A New Computing Environment for Collective Privacy Protection from Constrained Healthcare Devices to IoT Cloud Services – start-page: 25 year: 2017 end-page: 34 ident: b44 article-title: A Fog Computing-Based Framework for Process Monitoring and Prognosis in Cyber-Manufacturing, Vol. 43 – start-page: 22313 year: 2017 end-page: 22328 ident: b43 article-title: A security model for preserving the privacy of medical big data in a healthcare cloud using a fog computing facility with pairing-based cryptography publication-title: IEEE Access – start-page: 185 year: 2017 end-page: 190 ident: b54 article-title: Semantic Edge Computing and IoT Architecture for Military Health Services in Battlefield – volume: 71 start-page: 503 year: 2016 end-page: 515 ident: b99 article-title: Cloud support for large scale e-healthcare systems publication-title: Ann. Des. Telecommun. Telecommun. – volume: 112 start-page: 173 year: 2018 end-page: 184 ident: b137 article-title: A fuzzy logic control in adjustable autonomy of a multi-agent system for an automated elderly movement monitoring application publication-title: Int. J. Med. Inf. – reference: A.T. Ozdemir, C. Tunc, S. Hariri, Autonomic fall detection system, in: 2017 IEEE 2nd Int. Work. Found. Appl. Self* Syst. 2017, pp. 166–170. – year: 2016 ident: b148 article-title: Fog-To-Cloud Computing (F2C): The Key Technology Enabler for Dependable E-Health Services Deployment – reference: D. Lu, D. Huang, A. Walenstein, D. Medhi, A secure microservice framework for IoT, in; Proc. - 11th IEEE Int. Symp. Serv. Syst. Eng. SOSE 2017, 2017, pp. 9–18. – reference: M. and Maksimović, Improving computing issues in Internet of Things driven e-health systems, Vol. 1852. CEUR-WS, 2017, pp. 14–17. – start-page: 439 year: 2017 end-page: 441 ident: b40 article-title: Personalized Health Tracking with Edge Computing Technologies, Vol. 7, No. 2 – start-page: 2 year: 2015 end-page: 11 ident: b79 article-title: FAST: A Fog Computing Assisted Distributed Analytics System to Monitor Fall for Stroke Mitigation – reference: C. Pahl, S. Helmer, L. Miori, J. Sanin, B. Lee, A container-based edge cloud PaaS architecture based on raspberry Pi clusters, in: Proc. - 2016 4th Int. Conf. Futur. Internet Things Cloud Work. W-FiCloud 2016, 2016, pp. 117–124. – year: 2017 ident: b72 article-title: A New Architecture of Internet of Things and Big Data Ecosystem for Secured Smart Healthcare Monitoring and Alerting System – reference: P. Garraghan, T. Lin, M. Rovatsos, Fog Orchestration for Internet of Things Services, 2017. – reference: S. Yi, Z. Hao, Z. Qin, Q. Li, Fog computing: Platform and applications, in: Proc. - 3rd Work. Hot Top. Web Syst. Technol. HotWeb 2015, 2015, pp. 73–78. – reference: C. Puliafito, E. Mingozzi, G. Anastasi, Fog computing for the internet of mobile things: Issues and challenges, in: 2017 IEEE Int. Conf. Smart Comput. 2017, pp. 1–6. – year: 2018 ident: b142 article-title: Iot based real time traffic control using cloud computing publication-title: Cluster Comput. – volume: 14 start-page: 1 year: 2017 end-page: 16 ident: b86 article-title: Proactive personalized services through fog-cloud computing in large-scale IoT-based healthcare application publication-title: China Commun. – reference: M. Simsek, A. Aijaz, M. Dohler, J. Sachs, G. Fettweis, The 5G-enabled tactile internet: Applications, requirements, and architecture, in: 2016 IEEE Wirel. Commun. Netw. Conf. Work. WCNCW 2016, Vol. 8716, No. c, 2016, pp. 61–66. – year: 2018 ident: b138 article-title: A personalized authoritative user-based recommendation for social tagging publication-title: Future Gener. Comput. Syst. – volume: 1 year: 2018 ident: b136 article-title: Health of things algorithms for malignancy level classification of lung nodules publication-title: IEEE Access – reference: J. Oueis, E.C. Strinati, S. Sardellitti, S. Barbarossa, Small cell clustering for efficient distributed fog computing: A multi-user case, in: 2015 IEEE 82nd Vehicular Technology Conference, VTC2015-Fall, 2015, pp. 1–5. – volume: 20 start-page: 61 year: 2017 end-page: 69 ident: b135 article-title: Automatic segmentation and automatic seed point selection of nasopharyngeal carcinoma from microscopy images using region growing based approach publication-title: J. Comput. Sci. – year: 2018 ident: b141 article-title: Neural network and multi-fractal dimension features for breast cancer classification from ultrasound images publication-title: Comput. Electr. Eng. – volume: 64 start-page: 108 year: 2016 end-page: 124 ident: b28 article-title: End-to-end security scheme for mobility enabled healthcare Internet of Things, Futur publication-title: Gener. Comput. Syst. – volume: 731 start-page: 87 year: 2018 end-page: 115 ident: b11 article-title: Distributing computing in the internet of things: Cloud, fog and edge computing overview publication-title: Stud. Comput. Intell. – reference: T.N. Gia, et al., IoT-based fall detection system with energy efficient sensor nodes, in: NORCAS 2016 - 2nd IEEE NORCAS Conf. Vol. 65, 2016, pp. 0–5. – reference: T. Nishio, R. Shinkuma, T. Takahashi, N.B. Mandayam, Service-oriented heterogeneous resource sharing for optimizing service latency in mobile cloud, in: Proceedings of the first international workshop on Mobile cloud computing & networking - MobileCloud’13, 2013, p. 19. – volume: 68 start-page: 412 year: 2018 end-page: 424 ident: b134 article-title: Improved diagnosis of Parkinson’s disease using optimized crow search algorithm publication-title: Comput. Electr. Eng. – volume: 2 start-page: 10 year: 2018 ident: b29 article-title: Fog computing and the Internet of Things: A review publication-title: Big Data Cogn. Comput. – reference: T.N. Gia, M.J.A. Rahmani, T. Westerlund, P. Liljeberg, H. Tenhunen, Fog computing in healthcare internet-of-things – volume: 49 start-page: 112 year: 2016 end-page: 116 ident: b115 article-title: Fog computing: Helping the Internet of Things realize its potential publication-title: Comput. (Long. Beach. Calif) – volume: 42 start-page: 58 year: 2018 ident: b143 article-title: Computer aided solution for automatic segmenting and measurements of blood leucocytes using static microscope images publication-title: J. Med. Syst. – start-page: 187 year: 2016 end-page: 196 ident: b78 article-title: From Cloud to Fog and IoT-Based Real-Time U-Healthcare Monitoring for Smart Homes and Hospitals, Vol. 10, No. 2 – year: 2017 ident: b83 article-title: An Internet of Things-based health prescription assistant and its security system design publication-title: Future Gener. Comput. Syst. – start-page: 501 year: 2017 end-page: 506 ident: b113 article-title: State-of-the-Art of Cloud Solutions Based on ECG Sensors – reference: H. Dubey, J. Yang, N. Constant, A.M. Amiri, Q. Yang, K. Makodiya, Fog data: Enhancing telehealth big data through fog computing, in: Proc. ASE BigData Soc. 2015, 2015, pp. 14:1–14:6. – start-page: 43 year: 2018 end-page: 52 ident: b133 article-title: Evaluating the performance of three classification methods in diagnosis of parkinson’s disease publication-title: International Conference on Soft Computing and Data Mining – volume: 5 start-page: 16441 year: 2017 end-page: 16458 ident: b31 article-title: Edge mesh: A new paradigm to enable distributed intelligence in Internet of Things publication-title: IEEE Access – reference: O. Bibani, et al., A Demo of IoT Healthcare Application Provisioning in Hybrid Cloud / Fog Environment, no. October 2017, 2016. – volume: 21 start-page: 232 year: 2017 end-page: 240 ident: b144 article-title: Solving vehicle routing problem by using improved K-nearest neighbor algorithm for best solution publication-title: J. Comput. Sci. – volume: 5 start-page: 4418 year: 2017 end-page: 4430 ident: b1 article-title: Delay mitigation in offloaded cloud controllers in industrial IoT publication-title: IEEE Access – volume: 21 start-page: 263 year: 2017 end-page: 274 ident: b131 article-title: Artificial neural networks for automatic segmentation and identification of nasopharyngeal carcinoma publication-title: J. Comput. Sci. – volume: 16 year: 2017 ident: b82 article-title: HiCH: Hierarchical fog-assisted computing architecture for healthcare IoT publication-title: ACM Trans. Embed. Comput. Syst. Artic. – reference: O. Akrivopoulos, I. Chatzigiannakis, C. Tselios, A. Antoniou, On the deployment of healthcare applications over Fog computing infrastructure, in: 2017 IEEE 41st Annu. Comput. Softw. Appl. Conf. 2017. pp. 288–293. – volume: 3 start-page: 54 year: 2016 end-page: 62 ident: b70 article-title: A fog-based emergency system for smart enhanced living environments publication-title: IEEE Cloud Comput. – start-page: 459 year: 2016 end-page: 463 ident: b125 article-title: Implementation of Fog Computing for Reliable E-Health Applications, Vol. 2016–Febru – reference: B. Negash, et al., Leveraging fog computing for healthcare IoT, in: Fog Computing in the Internet of Things: Intelligence at the Edge, 2017, pp. 145–169. – reference: C. Dupont, R. Giaffreda, L. Capra, Edge computing in IoT context: Horizontal and vertical Linux container migration, in: GIoTS 2017 - Glob. Internet Things Summit, Proc., 2017, pp. 2–5. – year: 2018 ident: b130 article-title: Decision support system for nasopharyngeal carcinoma discrimination from endoscopic images using artificial neural network publication-title: The Journal of Supercomputing – volume: 83 start-page: 366 year: 2018 end-page: 373 ident: b140 article-title: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease publication-title: Future Gener. Comput. Syst. – volume: 6 start-page: 74 year: 2017 end-page: 82 ident: b17 article-title: IFCIoT: Integrated fog cloud IoT: A novel architectural paradigm for the future Internet of Things publication-title: IEEE Consum. Electron. Mag. – start-page: 641 year: 2017 end-page: 658 ident: b30 article-title: Exploiting Smart E-Health Gateways At the Edge of Healthcare Internet-of-Things: A Fog Computing Approach, Vol. 78 – start-page: 687 year: 2015 end-page: 694 ident: b45 article-title: Fog Computing Micro Datacenter Based Dynamic Resource Estimation and Pricing Model for IoT, Vol. 2015–April – start-page: 1 year: 2017 end-page: 34 ident: b105 article-title: How can edge computing benefit from software-defined networking: A survey, use cases & future directions publication-title: IEEE Commun. Surv. Tutor. – reference: A. Rajagopalan, M. Jagga, A. Kumari, S.T. Ali, A DDoS prevention scheme for session resumption SEA architecture in healthcare IoT, in: 3rd IEEE Int. Conf., 2017, pp. 1–5. – reference: D.W. McKee, S.J. Clement, J. Almutairi, J. Xu, Massive-scale automation in cyber-physical systems: Vision & challenges, in: Proc. - 2017 IEEE 13th Int. Symp. Auton. Decentralized Syst. ISADS 2017, 2017, pp. 5–11. – reference: D. Masouros, I. Bakolas, V. Tsoutsouras, K. Siozios, D. Soudris, From edge to cloud: Design and implementation of a healthcare Internet of Things infrastructure, in: 2017 27th Int. Symp. Power Timing Model. Optim. Simul. September, 2017, pp. 1–6. – volume: 4662 year: 2017 ident: b108 article-title: Mobile edge computing: A survey publication-title: IEEE Internet Things J. – reference: R. Mahmud, F.L. Koch, R. Buyya, Cloud-fog interoperability in IoT-enabled healthcare solutions, in: Proc. 19th Int. Conf. Distrib. Comput. Netw. - ICDCN’18, 2018, pp. 1–10. – start-page: 27 year: 2017 end-page: 42 ident: b5 article-title: Survey on Fog Computing: Architecture, Key Technologies, Applications and Open Issues, Vol. 98 – start-page: 3914 year: 2017 end-page: 3919 ident: b84 article-title: Data Driven Techniques for Neutralizing Authentication and Integrity Issues in Cloud, Vol. 12, No. 12 – volume: 95 year: 2017 ident: b146 article-title: Implementing an efficient expert system for services center management by fuzzy logic controller publication-title: J. Theor. Appl. Inf. Technol. – volume: 78 start-page: 712 year: 2017 end-page: 719 ident: b95 article-title: Anonymous and secure aggregation scheme in fog-based public cloud computing publication-title: Future Gener. Comput. Syst. – reference: A. Botta, W. De Donato, V. Persico, A. Pescape, On the integration of cloud computing and Internet of Things, in: Proc. - 2014 Int. Conf. Futur. Internet Things Cloud, FiCloud 2014, 2014, pp. 23–30. – reference: I. Azimi, A. Anzanpour, A.M. Rahmani, P. Liljeberg, T. Salakoski, Medical warning system based on Internet of Things using fog computing, in: 2016 Int. Work. Big Data Inf. Secur. IWBIS 2016, 2017, pp. 19–24. – start-page: 503 year: 2016 end-page: 515 ident: b81 article-title: Cloud Support for Large Scale E-Healthcare Systems, Vol. 71, No. 9–10 – year: 2017 ident: b151 article-title: A novel nonintrusive decision support approach for heart rate measurement publication-title: Pattern Recognit. Lett. – volume: 19 start-page: 1504 year: 2017 end-page: 1526 ident: b116 article-title: Industrial internet: A survey on the enabling technologies, applications, and challenges publication-title: IEEE Commun. Surv. Tutor. – reference: C. Lubamba, A. Bagula, Cyber-healthcare cloud computing interoperability using the HL7-CDA standard, in: Proc. - IEEE Symp. Comput. Commun. no. Iscc, 2017, pp. 105–110. – volume: X year: 2017 ident: b111 article-title: Smart cities: A survey on data management, security and enabling technologies publication-title: IEEE Commun. Surv. Tutor. – start-page: 1443 year: 2017 end-page: 1457 ident: b37 article-title: Software-Defined System Support for Enabling Ubiquitous Mobile Edge Computing, Vol. 60, No. 10 – start-page: 518 year: 2015 end-page: 523 ident: b59 article-title: E-HAMC: Leveraging Fog Computing for Emergency Alert Service – reference: J. Vora, S. Tanwar, S. Tyagi, N. Kumar, J.J.P.C. Rodrigues, FAAL: Fog computing-based patient monitoring system for ambient assisted living, in: 2017 IEEE 19th Int. Conf. e-Health Networking, Appl. Serv., 2017, pp. 1–6. – volume: 7 start-page: 439 year: 2017 end-page: 441 ident: b47 article-title: Personalized health tracking with edge computing technologies publication-title: Bionanoscience – volume: 68 start-page: 58 year: 2017 end-page: 69 ident: b74 article-title: Federated IoT services leveraging 5G technologies at the edge publication-title: Ad Hoc Networks – year: 2017 ident: b80 article-title: A Fog Based Healthcare Framework for Chikungunya – volume: 60 start-page: 1443 year: 2017 end-page: 1457 ident: b46 article-title: Software-defined system support for enabling ubiquitous mobile edge computing publication-title: Comput. J. – volume: 94 start-page: 211 year: 2017 end-page: 218 ident: b132 article-title: Analysis of Human Tissue Densities: A new approach to extract features from medical images publication-title: Pattern Recognit. Lett. – year: 2017 ident: b149 article-title: Edge of things: The big picture on the integration of edge, IoT and the cloud in a distributed computing environment publication-title: IEEE Access – reference: J. Li, J. Jin, D. Yuan, M. Palaniswami, K. Moessner, EHOPES: Data-centered Fog platform for smart living, in: 25th Int. Telecommun. Networks Appl. Conf. ITNAC 2015, 2015, pp. 308–313. – volume: 72 start-page: 3677 year: 2016 end-page: 3695 ident: b21 article-title: Health Fog: a novel framework for health and wellness applications publication-title: J. Supercomput. – reference: M. Ryden, K. Oh, A. Chandra, J. Weissman, Nebula: Distributed edge cloud for data intensive computing, in: 2014 IEEE Int. Conf. Cloud Eng., 2014, pp. 57–66. – reference: O. Ferrer-Roca, R. Tous, R. Milito, Big and small data: The fog, in: 2014 Int. Conf. Identification, Inf. Knowl. Internet Things, 2014, pp. 260–261. – start-page: 10 year: 2016 end-page: 12 ident: b58 article-title: Fit: A fog computing device for speech tele-treatments publication-title: Smart Comput. – volume: 85 start-page: 231 year: 2017 end-page: 248 ident: b101 article-title: COLLECT: COLLaborativE ConText-aware service oriented architecture for intelligent decision-making in the Internet of Things publication-title: Expert Syst. Appl. – volume: 5 year: 2017 ident: b39 article-title: Towards a secure mobile edge computing framework for Hajj publication-title: EEE Internet Things J. – reference: F.T. Zohora, M.R.R. Khan, M.F.R. Bhuiyan, A.K. Das, Enhancing the capabilities of IoT based fog and cloud infrastructures for time sensitive events, in: ICECOS 2017 - Proceeding 2017 Int. Conf. Electr. Eng. Comput. Sci. Sustain. Cult. Herit. Towar. Smart Environ. Better Futur., 2017, pp. 224–230. – reference: A. Jain, P. Singhal, Fog computing: Driving force behind the emergence of edge computing, in: Proc. 5th Int. Conf. Syst. Model. Adv. Res. Trends, SMART 2016, 2017, pp. 294–297. – volume: 130 start-page: 94 year: 2017 end-page: 120 ident: b10 article-title: Potentials, Trends, and Prospects in Edge Technologies: Fog, Cloudlet, Mobile Edge, and Micro Data Centers publication-title: Comput. Netw. – reference: M. Aazam, E.N. Huh, Fog computing micro datacenter based dynamic resource estimation and pricing model for IoT, in: Proc. - Int. Conf. Adv. Inf. Netw. Appl. AINA, Vol. 2015–April, no. January 2017, 2015, pp. 687–694. – start-page: 356 year: 2015 end-page: 363 ident: b55 article-title: Fog Computing in Healthcare Internet of Things: A Case Study on ECG Feature Extraction – reference: S.F. Abedin, M.G.R. Alam, N.H. Tran, C.S. Hong, A Fog based system model for cooperative IoT node pairing using matching theory, in: 2015 17th Asia-Pacific Network Operations and Management Symposium, APNOMS, 2015, pp. 309–314. – start-page: 323 year: 2016 end-page: 328 ident: b126 article-title: Enhancing EHealth Smart Applications: A Fog-Enabled Approach – volume: 78 start-page: 825 year: 2017 end-page: 837 ident: b73 article-title: Hybrid privacy-preserving clinical decision support system in fog–cloud computing publication-title: Future Gener. Comput. Syst. – volume: 56 start-page: 684 year: 2016 end-page: 700 ident: b122 article-title: Integration of cloud computing and Internet of Things: A survey publication-title: Future Gener. Comput. Syst. – volume: 21 start-page: 241 year: 2017 end-page: 254 ident: b19 article-title: Analysis of an electronic methods for nasopharyngeal carcinoma: Prevalence, diagnosis, challenges and technologies publication-title: J. Comput. Sci. – start-page: 105 year: 2017 end-page: 110 ident: b60 article-title: Cyber-Healthcare Cloud Computing Interoperability using the HL7-CDA StandArd – year: 2017 ident: b94 article-title: A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system publication-title: Future Gener. Comput. Syst. – year: 2017 ident: b128 article-title: Securing fog computing for Internet of Things applications: Challenges and solutions publication-title: IEEE Commun. Surv. Tutor. – reference: M. Abu-Elkheir, H.S. Hassanein, S.M.A. Oteafy, Enhancing emergency response systems through leveraging crowdsensing and heterogeneous data, in: 2016 Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2016, 2016, pp. 188–193. – reference: D. Singh, G. Tripathi, A.M. Alberti, A. Jara, Semantic edge computing and IoT architecture for military health services in battlefield, in: 2017 14th IEEE Annu. Consum. Commun. Netw. Conf. CCNC 2017, 2017, pp. 185–190. – volume: 4662 start-page: 1 year: 2017 end-page: 8 ident: b98 article-title: A fog based healthcare framework for Chikungunya publication-title: IEEE Internet Things J. – reference: L. Cerina, S. Notargiacomo, M.G. Paccanit, M.D. Santambrogio, A fog-computing architecture for preventive healthcare and assisted living in smart ambients, in: RTSI 2017 - IEEE 3rd Int. Forum Res. Technol. Soc. Ind. Conf. Proc., 2017. – reference: Y. Cao, P. Hou, D. Brown, J. Wang, S. Chen, Distributed analytics and edge intelligence, in: Proc. 2015 Work. Mob. Big Data - Mobidata ’15, 2015, pp. 43–48. – start-page: 4 year: 2017 end-page: 6 ident: b49 article-title: Fog computing publication-title: IEEE Internet Comput. – volume: 21 start-page: 64 year: 2017 end-page: 71 ident: b68 article-title: A serverless real-time data analytics platform for edge computing publication-title: IEEE Internet Comput. – reference: M. Aazam, E.N. Huh, Fog computing and smart gateway based communication for cloud of things, in: Proc. - 2014 Int. Conf. Futur. Internet Things Cloud, FiCloud 2014, 2014, pp. 464–470. – reference: M. Aazam, E.N. Huh, E-HAMC: Leveraging Fog computing for emergency alert service, in: 2015 IEEE Int. Conf. Pervasive Comput. Commun. Work. PerCom Work. 2015, 2015, pp. 518–523. – reference: Y. Cao, S. Chen, P. Hou, D. Brown, FAST: A fog computing assisted distributed analytics system to monitor fall for stroke mitigation, in: Proc. 2015 IEEE Int. Conf. Networking, Archit. Storage, NAS 2015, 2015, pp. 2–11. – reference: K. Bilal, S. Ur, R. Malik, S.U. Khan, Trends and Challenges in Cloud Datacenters, 2016. – reference: J. Tasic, A Medical Cloud, 2016, pp. 400–405. – year: 2018 ident: b145 article-title: Entropy features for focal EEG and non focal EEG publication-title: J. Comput. Sci. – volume: 91 start-page: 33 year: 2017 end-page: 44 ident: b25 article-title: Wearable IoT sensor based healthcare system for identifying and controlling chikungunya virus publication-title: Comput. Ind. – volume: 78 start-page: 641 year: 2018 end-page: 658 ident: b14 article-title: Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach publication-title: Future Gener. Comput. Syst. – start-page: 472 year: 2017 end-page: 475 ident: b77 article-title: A Demo of Iot Healthcare Application Provisioning in Hybrid Cloud/Fog Environment – reference: W. Wang, S. De, Y. Zhou, X. Huang, K. Moessner, Distributed sensor data computing in smart city applications, in; 18th IEEE Int. Symp. A World Wireless, Mob. Multimed. Networks, WoWMoM 2017 - Conf., 2017. – start-page: 849 year: 2017 end-page: 854 ident: b89 article-title: Using DEVS for Modeling and Simulating a Fog Computing Environment – reference: I.M. Al-joboury, E.H. Al-hemiary, Ubiquitous Networking, Vol. 10542, 2017, pp. 368–379. – reference: A. Kliem, O. Kao, The internet of things resource management challenge, in: 2015 IEEE Int. Conf. Data Sci. Data Intensive Syst., 2015, pp. 483–490. – reference: S. Chakraborty, S. Bhowmick, P. Talaga, D.P. Agrawal, Fog networks in healthcare application, in: Proc. - 2016 IEEE 13th Int. Conf. Mob. Ad Hoc Sens. Syst. MASS 2016, 2016, pp. 386–387. – reference: M. Etemad, M. Aazam, M. St-Hilaire, Using DEVS for modeling and simulating a Fog Computing environment, in: 2017 International Conference on Computing, Networking and Communications (ICNC), IEEE, 2017, pp. 849–854. – volume: 78 start-page: 583 year: 2018 end-page: 586 ident: b121 article-title: Internet-of-Things and big data for smarter healthcare: From device to architecture, applications and analytics publication-title: Future Gener. Comput. Syst. – reference: : A case study on ECG feature extraction, in: IEEE Int. Conf. Data Min. Work. ICDMW, 2015, pp. 356–363. – reference: C. Thuemmler, A. Paulin, A.K. Lim, Determinants of next generation e-Health network and architecture specifications, in: 2016 IEEE 18th Int. Conf. e-Health Networking, Appl. Serv. Heal. 2016, 2016. – reference: H. Zhang, Y. Xiao, S. Bu, D. Niyato, R. Yu, Z. Han, Fog Computing in Multi-Tier Data Center Networks : A Hierarchical Game Approach, 2016, pp. 1–6. – volume: 21 start-page: 283 year: 2017 end-page: 298 ident: b18 article-title: Review on Nasopharyngeal Carcinoma: Concepts, methods of analysis, segmentation, classification, prediction and impact: A review of the research literature publication-title: J. Comput. Sci. – year: 2018 ident: b129 article-title: A real time computer aided object detection of nasopharyngeal carcinoma using genetic algorithm and artificial neural network based on Haar feature fear publication-title: Future Gener. Comput. Syst. – start-page: 1 year: 2017 end-page: 28 ident: b3 article-title: A new computing environment for collective privacy protection from constrained healthcare devices to IoT cloud services publication-title: Cluster Comput. – reference: A. Al-fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of Things – volume: 3 start-page: 637 issue: 5 year: 2016 ident: 10.1016/j.future.2018.07.049_b102 article-title: Edge computing: Vision and challenges publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2016.2579198 – ident: 10.1016/j.future.2018.07.049_b53 doi: 10.1109/IC2E.2014.34 – volume: 5 start-page: 4418 year: 2017 ident: 10.1016/j.future.2018.07.049_b1 article-title: Delay mitigation in offloaded cloud controllers in industrial IoT publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2682499 – ident: 10.1016/j.future.2018.07.049_b27 doi: 10.1109/TELSKS.2015.7357752 – ident: 10.1016/j.future.2018.07.049_b52 doi: 10.1109/GIOTS.2017.8016218 – ident: 10.1016/j.future.2018.07.049_b119 doi: 10.1109/IIKI.2014.60 – volume: 1 year: 2018 ident: 10.1016/j.future.2018.07.049_b136 article-title: Health of things algorithms for malignancy level classification of lung nodules publication-title: IEEE Access – ident: 10.1016/j.future.2018.07.049_b65 doi: 10.1109/HotWeb.2015.22 – volume: 4662 start-page: 1 issue: c year: 2017 ident: 10.1016/j.future.2018.07.049_b98 article-title: A fog based healthcare framework for Chikungunya publication-title: IEEE Internet Things J. – volume: 5 start-page: 8284 issue: c year: 2017 ident: 10.1016/j.future.2018.07.049_b114 article-title: From cloud to fog computing: A review and a conceptual live VM migration framework publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2692960 – issue: c year: 2017 ident: 10.1016/j.future.2018.07.049_b15 article-title: A comprehensive survey on fog computing: State-of-the-art and research challenges publication-title: IEEE Commun. Surv. Tutor. – start-page: 503 year: 2016 ident: 10.1016/j.future.2018.07.049_b81 – ident: 10.1016/j.future.2018.07.049_b66 doi: 10.1109/NORCHIP.2016.7792890 – ident: 10.1016/j.future.2018.07.049_b106 doi: 10.1109/COMST.2015.2444095 – ident: 10.1016/j.future.2018.07.049_b64 doi: 10.1109/PATMOS.2017.8106984 – ident: 10.1016/j.future.2018.07.049_b50 doi: 10.1109/ICCNC.2017.7876242 – start-page: 501 year: 2017 ident: 10.1016/j.future.2018.07.049_b113 – volume: 78 start-page: 583 year: 2018 ident: 10.1016/j.future.2018.07.049_b121 article-title: Internet-of-Things and big data for smarter healthcare: From device to architecture, applications and analytics publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.09.016 – year: 2017 ident: 10.1016/j.future.2018.07.049_b94 article-title: A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system publication-title: Future Gener. Comput. Syst. – volume: 14 start-page: 1 issue: 11 year: 2017 ident: 10.1016/j.future.2018.07.049_b86 article-title: Proactive personalized services through fog-cloud computing in large-scale IoT-based healthcare application publication-title: China Commun. doi: 10.1109/CC.2017.8233646 – start-page: 1 year: 2017 ident: 10.1016/j.future.2018.07.049_b103 – volume: 68 start-page: 58 year: 2017 ident: 10.1016/j.future.2018.07.049_b74 article-title: Federated IoT services leveraging 5G technologies at the edge publication-title: Ad Hoc Networks doi: 10.1016/j.adhoc.2017.09.002 – volume: 4 start-page: 8418 issue: Idc year: 2016 ident: 10.1016/j.future.2018.07.049_b34 article-title: A fog based middleware for automated compliance with OECD privacy principles in internet of healthcare things publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2631546 – ident: 10.1016/j.future.2018.07.049_b87 doi: 10.1109/FiCloud.2014.83 – ident: 10.1016/j.future.2018.07.049_b97 doi: 10.1109/NAS.2015.7255196 – volume: 85 start-page: 231 year: 2017 ident: 10.1016/j.future.2018.07.049_b101 article-title: COLLECT: COLLaborativE ConText-aware service oriented architecture for intelligent decision-making in the Internet of Things publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.05.034 – volume: 112 start-page: 173 year: 2018 ident: 10.1016/j.future.2018.07.049_b137 article-title: A fuzzy logic control in adjustable autonomy of a multi-agent system for an automated elderly movement monitoring application publication-title: Int. J. Med. Inf. doi: 10.1016/j.ijmedinf.2018.02.001 – volume: 78 start-page: 712 year: 2017 ident: 10.1016/j.future.2018.07.049_b95 article-title: Anonymous and secure aggregation scheme in fog-based public cloud computing publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.02.032 – volume: 12 start-page: 3914 issue: 12 year: 2017 ident: 10.1016/j.future.2018.07.049_b100 article-title: Data driven techniques for neutralizing authentication and integrity issues in cloud publication-title: ARPN J. Eng. Appl. Sci. – year: 2018 ident: 10.1016/j.future.2018.07.049_b129 article-title: A real time computer aided object detection of nasopharyngeal carcinoma using genetic algorithm and artificial neural network based on Haar feature fear publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.07.022 – ident: 10.1016/j.future.2018.07.049_b69 doi: 10.1109/MIPRO.2016.7522176 – start-page: 9206 year: 2017 ident: 10.1016/j.future.2018.07.049_b16 – year: 2017 ident: 10.1016/j.future.2018.07.049_b149 article-title: Edge of things: The big picture on the integration of edge, IoT and the cloud in a distributed computing environment publication-title: IEEE Access – ident: 10.1016/j.future.2018.07.049_b96 doi: 10.1109/CloudCom.2016.0081 – year: 2018 ident: 10.1016/j.future.2018.07.049_b145 article-title: Entropy features for focal EEG and non focal EEG publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2018.02.002 – volume: 20 start-page: 61 year: 2017 ident: 10.1016/j.future.2018.07.049_b135 article-title: Automatic segmentation and automatic seed point selection of nasopharyngeal carcinoma from microscopy images using region growing based approach publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.03.009 – ident: 10.1016/j.future.2018.07.049_b150 doi: 10.1109/Ubi-HealthTech.2015.7203325 – ident: 10.1016/j.future.2018.07.049_b88 doi: 10.1109/CCNC.2017.7983103 – volume: 19 start-page: 1504 issue: 3 year: 2017 ident: 10.1016/j.future.2018.07.049_b116 article-title: Industrial internet: A survey on the enabling technologies, applications, and challenges publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2017.2691349 – volume: 35 start-page: 40 issue: 3 year: 2016 ident: 10.1016/j.future.2018.07.049_b7 article-title: Fog computing: The Cloud-IoT/IoE middleware paradigm publication-title: IEEE Potentials doi: 10.1109/MPOT.2015.2456213 – start-page: 687 year: 2015 ident: 10.1016/j.future.2018.07.049_b45 – ident: 10.1016/j.future.2018.07.049_b112 doi: 10.1109/SMARTCOMP.2017.7947010 – year: 2018 ident: 10.1016/j.future.2018.07.049_b138 article-title: A personalized authoritative user-based recommendation for social tagging publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.03.048 – year: 2017 ident: 10.1016/j.future.2018.07.049_b151 article-title: A novel nonintrusive decision support approach for heart rate measurement publication-title: Pattern Recognit. Lett. – volume: 5 year: 2017 ident: 10.1016/j.future.2018.07.049_b39 article-title: Towards a secure mobile edge computing framework for Hajj publication-title: EEE Internet Things J. – start-page: 2 year: 2015 ident: 10.1016/j.future.2018.07.049_b79 – ident: 10.1016/j.future.2018.07.049_b20 doi: 10.1109/IWCMC.2017.7986551 – ident: 10.1016/j.future.2018.07.049_b85 doi: 10.1109/CCECE.2017.7946780 – volume: 83 start-page: 366 year: 2018 ident: 10.1016/j.future.2018.07.049_b140 article-title: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.02.009 – ident: 10.1016/j.future.2018.07.049_b6 doi: 10.1109/ICC.2016.7511146 – ident: 10.1016/j.future.2018.07.049_b62 doi: 10.1109/EMBC.2017.8037330 – start-page: 3677 year: 2016 ident: 10.1016/j.future.2018.07.049_b12 – start-page: 4 year: 2017 ident: 10.1016/j.future.2018.07.049_b49 article-title: Fog computing publication-title: IEEE Internet Comput. – start-page: 356 year: 2015 ident: 10.1016/j.future.2018.07.049_b55 – volume: 78 start-page: 825 year: 2017 ident: 10.1016/j.future.2018.07.049_b73 article-title: Hybrid privacy-preserving clinical decision support system in fog–cloud computing publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.03.018 – ident: 10.1016/j.future.2018.07.049_b35 doi: 10.1109/VTCFall.2015.7391144 – start-page: 22313 year: 2017 ident: 10.1016/j.future.2018.07.049_b43 article-title: A security model for preserving the privacy of medical big data in a healthcare cloud using a fog computing facility with pairing-based cryptography publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2757844 – start-page: 1 year: 2017 ident: 10.1016/j.future.2018.07.049_b3 article-title: A new computing environment for collective privacy protection from constrained healthcare devices to IoT cloud services publication-title: Cluster Comput. – ident: 10.1016/j.future.2018.07.049_b38 doi: 10.1109/DSDIS.2015.21 – volume: 7 start-page: 439 issue: 2 year: 2017 ident: 10.1016/j.future.2018.07.049_b47 article-title: Personalized health tracking with edge computing technologies publication-title: Bionanoscience doi: 10.1007/s12668-016-0388-5 – year: 2018 ident: 10.1016/j.future.2018.07.049_b142 article-title: Iot based real time traffic control using cloud computing publication-title: Cluster Comput. – start-page: 105 year: 2017 ident: 10.1016/j.future.2018.07.049_b60 – year: 2018 ident: 10.1016/j.future.2018.07.049_b141 article-title: Neural network and multi-fractal dimension features for breast cancer classification from ultrasound images publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2018.01.033 – ident: 10.1016/j.future.2018.07.049_b90 doi: 10.1109/PERCOMW.2015.7134091 – year: 2017 ident: 10.1016/j.future.2018.07.049_b80 – ident: 10.1016/j.future.2018.07.049_b127 – start-page: 459 year: 2016 ident: 10.1016/j.future.2018.07.049_b125 – ident: 10.1016/j.future.2018.07.049_b71 doi: 10.1109/FAS-W.2017.142 – ident: 10.1016/j.future.2018.07.049_b22 doi: 10.1109/MASS.2016.065 – volume: 21 start-page: 263 year: 2017 ident: 10.1016/j.future.2018.07.049_b131 article-title: Artificial neural networks for automatic segmentation and identification of nasopharyngeal carcinoma publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.03.026 – volume: 78 start-page: 641 year: 2018 ident: 10.1016/j.future.2018.07.049_b14 article-title: Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.02.014 – volume: 5 start-page: 16441 year: 2017 ident: 10.1016/j.future.2018.07.049_b31 article-title: Edge mesh: A new paradigm to enable distributed intelligence in Internet of Things publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2739804 – volume: 68 start-page: 412 year: 2018 ident: 10.1016/j.future.2018.07.049_b134 article-title: Improved diagnosis of Parkinson’s disease using optimized crow search algorithm publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2018.04.014 – ident: 10.1016/j.future.2018.07.049_b93 doi: 10.1109/ISCC.2017.8024513 – start-page: 1 issue: c year: 2017 ident: 10.1016/j.future.2018.07.049_b105 article-title: How can edge computing benefit from software-defined networking: A survey, use cases & future directions publication-title: IEEE Commun. Surv. Tutor. – volume: 16 issue: 20 year: 2017 ident: 10.1016/j.future.2018.07.049_b82 article-title: HiCH: Hierarchical fog-assisted computing architecture for healthcare IoT publication-title: ACM Trans. Embed. Comput. Syst. Artic. – start-page: 25 year: 2017 ident: 10.1016/j.future.2018.07.049_b44 – volume: X issue: X year: 2017 ident: 10.1016/j.future.2018.07.049_b111 article-title: Smart cities: A survey on data management, security and enabling technologies publication-title: IEEE Commun. Surv. Tutor. – start-page: 3914 year: 2017 ident: 10.1016/j.future.2018.07.049_b84 – ident: 10.1016/j.future.2018.07.049_b120 doi: 10.1109/HealthCom.2016.7749460 – ident: 10.1016/j.future.2018.07.049_b61 doi: 10.1109/IWCMC.2016.7577055 – start-page: 1443 year: 2017 ident: 10.1016/j.future.2018.07.049_b37 – volume: 21 start-page: 232 year: 2017 ident: 10.1016/j.future.2018.07.049_b144 article-title: Solving vehicle routing problem by using improved K-nearest neighbor algorithm for best solution publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.04.012 – year: 2017 ident: 10.1016/j.future.2018.07.049_b72 – ident: 10.1016/j.future.2018.07.049_b104 – volume: 21 start-page: 64 issue: 4 year: 2017 ident: 10.1016/j.future.2018.07.049_b68 article-title: A serverless real-time data analytics platform for edge computing publication-title: IEEE Internet Comput. doi: 10.1109/MIC.2017.2911430 – year: 2016 ident: 10.1016/j.future.2018.07.049_b148 – ident: 10.1016/j.future.2018.07.049_b118 doi: 10.1109/FiCloud.2014.14 – volume: 64 start-page: 108 year: 2016 ident: 10.1016/j.future.2018.07.049_b28 article-title: End-to-end security scheme for mobility enabled healthcare Internet of Things, Futur publication-title: Gener. Comput. Syst. doi: 10.1016/j.future.2016.02.020 – year: 2018 ident: 10.1016/j.future.2018.07.049_b130 article-title: Decision support system for nasopharyngeal carcinoma discrimination from endoscopic images using artificial neural network publication-title: The Journal of Supercomputing – ident: 10.1016/j.future.2018.07.049_b26 doi: 10.1109/ICECOS.2017.8167139 – ident: 10.1016/j.future.2018.07.049_b92 doi: 10.1109/IWCMC.2017.7986551 – ident: 10.1016/j.future.2018.07.049_b147 doi: 10.1109/APNOMS.2015.7275445 – ident: 10.1016/j.future.2018.07.049_b56 doi: 10.1109/WoWMoM.2017.7974338 – ident: 10.1016/j.future.2018.07.049_b75 doi: 10.1145/2757384.2757398 – ident: 10.1016/j.future.2018.07.049_b110 doi: 10.1109/IEDM.2016.7838027 – ident: 10.1016/j.future.2018.07.049_b4 – ident: 10.1016/j.future.2018.07.049_b48 doi: 10.1145/3154273.3154347 – volume: 56 start-page: 684 year: 2016 ident: 10.1016/j.future.2018.07.049_b122 article-title: Integration of cloud computing and Internet of Things: A survey publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2015.09.021 – volume: 4662 issue: c year: 2017 ident: 10.1016/j.future.2018.07.049_b108 article-title: Mobile edge computing: A survey publication-title: IEEE Internet Things J. – ident: 10.1016/j.future.2018.07.049_b33 doi: 10.1109/AINA.2015.254 – ident: 10.1016/j.future.2018.07.049_b36 doi: 10.1145/2492348.2492354 – start-page: 43 year: 2018 ident: 10.1016/j.future.2018.07.049_b133 article-title: Evaluating the performance of three classification methods in diagnosis of parkinson’s disease – start-page: 10 year: 2016 ident: 10.1016/j.future.2018.07.049_b58 article-title: Fit: A fog computing device for speech tele-treatments publication-title: Smart Comput. – start-page: 472 year: 2017 ident: 10.1016/j.future.2018.07.049_b77 – ident: 10.1016/j.future.2018.07.049_b91 doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.51 – volume: 130 start-page: 94 year: 2017 ident: 10.1016/j.future.2018.07.049_b10 article-title: Potentials, Trends, and Prospects in Edge Technologies: Fog, Cloudlet, Mobile Edge, and Micro Data Centers publication-title: Comput. Netw. doi: 10.1016/j.comnet.2017.10.002 – ident: 10.1016/j.future.2018.07.049_b24 doi: 10.1007/978-3-319-57639-8_8 – start-page: 641 year: 2017 ident: 10.1016/j.future.2018.07.049_b30 – start-page: 187 year: 2016 ident: 10.1016/j.future.2018.07.049_b78 – start-page: 439 year: 2017 ident: 10.1016/j.future.2018.07.049_b40 – volume: 21 start-page: 283 year: 2017 ident: 10.1016/j.future.2018.07.049_b18 article-title: Review on Nasopharyngeal Carcinoma: Concepts, methods of analysis, segmentation, classification, prediction and impact: A review of the research literature publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.03.021 – ident: 10.1016/j.future.2018.07.049_b8 doi: 10.1109/RTSI.2017.8065939 – volume: 71 start-page: 503 issue: 9–10 year: 2016 ident: 10.1016/j.future.2018.07.049_b99 article-title: Cloud support for large scale e-healthcare systems publication-title: Ann. Des. Telecommun. Telecommun. doi: 10.1007/s12243-016-0496-9 – ident: 10.1016/j.future.2018.07.049_b67 doi: 10.1109/COMPSAC.2017.178 – ident: 10.1016/j.future.2018.07.049_b2 – year: 2018 ident: 10.1016/j.future.2018.07.049_b139 article-title: Secure medical data transmission model for IoT-based healthcare systems publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2817615 – start-page: 518 year: 2015 ident: 10.1016/j.future.2018.07.049_b59 – ident: 10.1016/j.future.2018.07.049_b76 doi: 10.1007/978-3-319-68179-5_32 – year: 2017 ident: 10.1016/j.future.2018.07.049_b83 article-title: An Internet of Things-based health prescription assistant and its security system design publication-title: Future Gener. Comput. Syst. – ident: 10.1016/j.future.2018.07.049_b13 doi: 10.1109/HealthCom.2017.8210825 – volume: 3 start-page: 54 issue: 6 year: 2016 ident: 10.1016/j.future.2018.07.049_b70 article-title: A fog-based emergency system for smart enhanced living environments publication-title: IEEE Cloud Comput. doi: 10.1109/MCC.2016.118 – volume: 60 start-page: 1443 issue: 10 year: 2017 ident: 10.1016/j.future.2018.07.049_b46 article-title: Software-defined system support for enabling ubiquitous mobile edge computing publication-title: Comput. J. doi: 10.1093/comjnl/bxx019 – ident: 10.1016/j.future.2018.07.049_b57 doi: 10.1109/IWBIS.2016.7872884 – volume: 78 start-page: 659 year: 2018 ident: 10.1016/j.future.2018.07.049_b123 article-title: Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.04.036 – start-page: 323 year: 2016 ident: 10.1016/j.future.2018.07.049_b126 – volume: 95 issue: 13 year: 2017 ident: 10.1016/j.future.2018.07.049_b146 article-title: Implementing an efficient expert system for services center management by fuzzy logic controller publication-title: J. Theor. Appl. Inf. Technol. – volume: 49 start-page: 112 issue: 8 year: 2016 ident: 10.1016/j.future.2018.07.049_b115 article-title: Fog computing: Helping the Internet of Things realize its potential publication-title: Comput. (Long. Beach. Calif) – ident: 10.1016/j.future.2018.07.049_b32 doi: 10.1109/CIACT.2017.7977361 – ident: 10.1016/j.future.2018.07.049_b117 doi: 10.1109/ISADS.2017.56 – volume: 42 start-page: 58 issue: 4 year: 2018 ident: 10.1016/j.future.2018.07.049_b143 article-title: Computer aided solution for automatic segmenting and measurements of blood leucocytes using static microscope images publication-title: J. Med. Syst. doi: 10.1007/s10916-018-0912-y – ident: 10.1016/j.future.2018.07.049_b41 doi: 10.1109/LCN.Workshops.2017.73 – ident: 10.1016/j.future.2018.07.049_b109 doi: 10.1109/SYSMART.2016.7894538 – volume: 98 start-page: 27 issue: April year: 2017 ident: 10.1016/j.future.2018.07.049_b124 article-title: Survey on fog computing: architecture, key technologies, applications and open issues publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2017.09.002 – ident: 10.1016/j.future.2018.07.049_b63 doi: 10.1109/W-FiCloud.2016.36 – volume: 6 start-page: 74 issue: 3 year: 2017 ident: 10.1016/j.future.2018.07.049_b17 article-title: IFCIoT: Integrated fog cloud IoT: A novel architectural paradigm for the future Internet of Things publication-title: IEEE Consum. Electron. Mag. doi: 10.1109/MCE.2017.2684981 – ident: 10.1016/j.future.2018.07.049_b107 doi: 10.1109/WCNCW.2016.7552676 – volume: 91 start-page: 33 year: 2017 ident: 10.1016/j.future.2018.07.049_b25 article-title: Wearable IoT sensor based healthcare system for identifying and controlling chikungunya virus publication-title: Comput. Ind. doi: 10.1016/j.compind.2017.05.006 – volume: 21 start-page: 241 year: 2017 ident: 10.1016/j.future.2018.07.049_b19 article-title: Analysis of an electronic methods for nasopharyngeal carcinoma: Prevalence, diagnosis, challenges and technologies publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.04.006 – volume: 94 start-page: 211 year: 2017 ident: 10.1016/j.future.2018.07.049_b132 article-title: Analysis of Human Tissue Densities: A new approach to extract features from medical images publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.02.005 – ident: 10.1016/j.future.2018.07.049_b23 doi: 10.1145/2818869.2818889 – ident: 10.1016/j.future.2018.07.049_b42 doi: 10.1109/SOSE.2017.27 – volume: 72 start-page: 3677 issue: 10 year: 2016 ident: 10.1016/j.future.2018.07.049_b21 article-title: Health Fog: a novel framework for health and wellness applications publication-title: J. Supercomput. doi: 10.1007/s11227-016-1634-x – volume: 731 start-page: 87 year: 2018 ident: 10.1016/j.future.2018.07.049_b11 article-title: Distributing computing in the internet of things: Cloud, fog and edge computing overview publication-title: Stud. Comput. Intell. doi: 10.1007/978-3-319-64063-1_4 – volume: 2 start-page: 10 issue: 2 year: 2018 ident: 10.1016/j.future.2018.07.049_b29 article-title: Fog computing and the Internet of Things: A review publication-title: Big Data Cogn. Comput. doi: 10.3390/bdcc2020010 – ident: 10.1016/j.future.2018.07.049_b51 doi: 10.1109/HotWeb.2016.12 – ident: 10.1016/j.future.2018.07.049_b9 doi: 10.1109/ATNAC.2015.7366831 – start-page: 27 year: 2017 ident: 10.1016/j.future.2018.07.049_b5 – start-page: 849 year: 2017 ident: 10.1016/j.future.2018.07.049_b89 – issue: c year: 2017 ident: 10.1016/j.future.2018.07.049_b128 article-title: Securing fog computing for Internet of Things applications: Challenges and solutions publication-title: IEEE Commun. Surv. Tutor. – start-page: 185 year: 2017 ident: 10.1016/j.future.2018.07.049_b54 |
| SSID | ssj0001731 |
| Score | 2.670395 |
| Snippet | Context: A fog computing architecture that is geographically distributed and to which a variety of heterogeneous devices are ubiquitously connected at the end... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 62 |
| SubjectTerms | Cloud computing Edge computing Fog computing Healthcare applications Shared nodes Shared resources Smart gateways Systematic literature review |
| Title | Enabling technologies for fog computing in healthcare IoT systems |
| URI | https://dx.doi.org/10.1016/j.future.2018.07.049 |
| Volume | 90 |
| WOSCitedRecordID | wos000446283600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMX3ojyqPbALXLltePs7tFCKbRUEYcg5WZt9kFSIidqndK_wL9m9mWnFBV66CFWYtnjx3yamZ3MzIfQB3BinKVqlEiiRTI0EMMJnZlEZkqnhoxg4eLmzJ7SyYTNZvxrr_cr9sJcrmhds6srvrlXVcM-ULZtnb2DuluhsAO-g9JhC2qH7X8pfmy7oVwTVMyaw2LYVROateuv3Wyb0Miy6Iq_jtfTMNX5YjdePXIjRyzPsg5QkYEG4trRTmPNSji7Udp2uEH5U6juvyU1-LTw7FFgRRZq8AV-ic2yg9u2_hGLvSeHrcz1wibWPe-xnYM9KOehGSskKmxvVJuoCLlLsMk0d8y5rfH1XKHBega77P2wZ_a5YeF9suHs0I9csbV5zE1f9YNPrw_U_sPRteWHsbLtrPJSKiulSmkFUh6gvYwWnPXRXnk8np20bp3QQG4ZniL2YbpiwZt38_c4Zyd2mT5Fj8OiA5ceLM9QT9fP0ZNI6IGDfX-ByogdvIsdDNiBz3fcYgcva9xhBwN2cEDDS_TtaDz9-DkJHBuJhMVikwjOVUGEKoThIzqc2_gZPN7QiMxQpogymSCEC2W0zAulRF5oplWq5zlN6Ujkr1C_Xtf6NcJE5aLgIMIoMzSZ5DmbU01SSZghhpt9lMc3UskwgN7yoKyq2_Sxj5L2rI0fwPKP42l82VUIIn1wWAGCbj3zzR2v9BY96mD-DvWb861-jx7Ky2Z5cX4Q4PMb0vCaFg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+technologies+for+fog+computing+in+healthcare+IoT+systems&rft.jtitle=Future+generation+computer+systems&rft.au=Mutlag%2C+Ammar+Awad&rft.au=Abd+Ghani%2C+Mohd+Khanapi&rft.au=Arunkumar%2C+N.&rft.au=Mohammed%2C+Mazin+Abed&rft.date=2019-01-01&rft.issn=0167-739X&rft.volume=90&rft.spage=62&rft.epage=78&rft_id=info:doi/10.1016%2Fj.future.2018.07.049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2018_07_049 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |