An algorithm for low-rank matrix factorization and its applications

This paper proposes a valid and fast algorithm for low-rank matrix factorization. There are multiple applications for low-rank matrix factorization, and numerous algorithms have been developed to solve this problem. However, many algorithms do not use rank directly; instead, they minimize a nuclear...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 275; s. 1012 - 1020
Hlavní autori: Chen, Baiyu, Yang, Zi, Yang, Zhouwang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 31.01.2018
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes a valid and fast algorithm for low-rank matrix factorization. There are multiple applications for low-rank matrix factorization, and numerous algorithms have been developed to solve this problem. However, many algorithms do not use rank directly; instead, they minimize a nuclear norm by using Singular Value Decomposition (SVD), which requires a huge time cost. In addition, these algorithms often fix the dimension of the factorized matrix, meaning that one must first find an optimum dimension for the factorized matrix in order to obtain a solution. Unfortunately, the optimum dimension is unknown in many practical problems, such as matrix completion and recommender systems. Therefore, it is necessary to develop a faster algorithm that can also estimate the optimum dimension. In this paper, we use the Hidden Matrix Factorized Augmented Lagrangian Method to solve low-rank matrix factorizations. We also add a tool to dynamically estimate the optimum dimension and adjust it while simultaneously running the algorithm. Additionally, in the era of Big Data, there will be more and more large, sparse data. In face of such highly sparse data, our algorithm has the potential to be more effective than other algorithms. We applied it to some practical problems, e.g. Low-Rank Representation(LRR), and matrix completion with constraint. In numerical experiments, it has performed well when applied to both synthetic data and real-world data.
AbstractList This paper proposes a valid and fast algorithm for low-rank matrix factorization. There are multiple applications for low-rank matrix factorization, and numerous algorithms have been developed to solve this problem. However, many algorithms do not use rank directly; instead, they minimize a nuclear norm by using Singular Value Decomposition (SVD), which requires a huge time cost. In addition, these algorithms often fix the dimension of the factorized matrix, meaning that one must first find an optimum dimension for the factorized matrix in order to obtain a solution. Unfortunately, the optimum dimension is unknown in many practical problems, such as matrix completion and recommender systems. Therefore, it is necessary to develop a faster algorithm that can also estimate the optimum dimension. In this paper, we use the Hidden Matrix Factorized Augmented Lagrangian Method to solve low-rank matrix factorizations. We also add a tool to dynamically estimate the optimum dimension and adjust it while simultaneously running the algorithm. Additionally, in the era of Big Data, there will be more and more large, sparse data. In face of such highly sparse data, our algorithm has the potential to be more effective than other algorithms. We applied it to some practical problems, e.g. Low-Rank Representation(LRR), and matrix completion with constraint. In numerical experiments, it has performed well when applied to both synthetic data and real-world data.
Author Yang, Zhouwang
Chen, Baiyu
Yang, Zi
Author_xml – sequence: 1
  givenname: Baiyu
  surname: Chen
  fullname: Chen, Baiyu
  organization: University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Zi
  surname: Yang
  fullname: Yang, Zi
  organization: University of California, San Diego, USA
– sequence: 3
  givenname: Zhouwang
  surname: Yang
  fullname: Yang, Zhouwang
  email: yangzw@ustc.edu.cn
  organization: University of Science and Technology of China, Hefei, China
BookMark eNqFkMtOwzAQRS1UJErhD1jkBxJsJ05sFkhVxUuqxAbW1nTsgEsSV7Z5fj1py4oFLEYjzdx7NXOOyWTwgyXkjNGCUVafr4vBvqLvC05ZU1BVUMEPyJTJhueSy3pCplRxkfOS8SNyHOOajkLG1ZQs5kMG3ZMPLj33WetD1vn3PMDwkvWQgvvIWsA0rr8gOT9qB5O5FDPYbDqHu1k8IYctdNGe_vQZeby-eljc5sv7m7vFfJljSeuUgzQAlWxsTTlUXMiSAl8xgUKVzCgxlrFosTK1QmmaZkV5g6saWmFEVVfljFzsczH4GINtNbq0OyEFcJ1mVG9x6LXe49BbHJoqPeIYzdUv8ya4HsLnf7bLvc2Oj705G3REZwe0xgWLSRvv_g74Bt50f1Q
CitedBy_id crossref_primary_10_1155_2022_8662238
crossref_primary_10_3389_fgene_2021_810875
crossref_primary_10_1016_j_neucom_2018_10_065
crossref_primary_10_1049_ipr2_13241
crossref_primary_10_1109_JAS_2023_123450
crossref_primary_10_1109_ACCESS_2020_3000816
crossref_primary_10_1016_j_knosys_2022_109210
crossref_primary_10_1016_j_neucom_2019_08_083
crossref_primary_10_1016_j_knosys_2018_09_028
crossref_primary_10_1109_TCYB_2022_3196444
crossref_primary_10_12677_aam_2024_1312524
crossref_primary_10_1016_j_ijleo_2020_164214
crossref_primary_10_1016_j_neucom_2018_08_045
crossref_primary_10_1007_s13042_021_01361_1
crossref_primary_10_1080_09500340_2020_1764119
crossref_primary_10_12677_aam_2024_1311480
crossref_primary_10_1016_j_neucom_2018_05_122
Cites_doi 10.1016/j.neucom.2014.12.051
10.1007/s10107-011-0452-4
10.1137/15M1052834
10.1016/j.neucom.2014.05.022
10.1109/TIP.2014.2380155
10.1109/JPROC.2009.2035722
10.1016/j.neucom.2012.12.012
10.1145/1345448.1345466
10.1137/080738970
10.1109/TIP.2015.2481325
10.1007/s10208-009-9045-5
10.1145/1345448.1345459
10.1109/TIP.2015.2419084
10.1109/TPAMI.2012.88
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2017.09.052
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 1020
ExternalDocumentID 10_1016_j_neucom_2017_09_052
S0925231217315710
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-a8daa487e602a425830a2b15c5931d951d9decec4d69c8d77b027cb6af5d54643
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418370200096&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 21:58:30 EST 2025
Sat Nov 29 07:14:44 EST 2025
Fri Feb 23 02:46:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Augmented Lagrangian method
Matrix factorization
Low-rank representation
Sparseness
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-a8daa487e602a425830a2b15c5931d951d9decec4d69c8d77b027cb6af5d54643
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2017_09_052
crossref_primary_10_1016_j_neucom_2017_09_052
elsevier_sciencedirect_doi_10_1016_j_neucom_2017_09_052
PublicationCentury 2000
PublicationDate 2018-01-31
PublicationDateYYYYMMDD 2018-01-31
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-31
  day: 31
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Lin, Zhang, Gao (bib0024) 2014; 145
Liu, Zhao, Yao, Qi (bib0014) 2015; 24
Zhang, Yang (bib0025) 2013; 111
Takács, Pilászy, Németh, Tikk (bib0021) 2007; 9
Lan, Ma, Yuen, Chellappa (bib0009) 2015; 24
Lu, Zhang (bib0017) 2012; 135
Liu, Lin, Yu (bib0013) 2010
Liu, Lin, Yan, Sun, Yu, Ma (bib0012) 2013; 35
Cai, Cand‘es, Shen (bib0003) 2010; 20
Fazel (bib0007) 2002
Markovsky (bib0018) 2011
Chen, Guo, Lu, Ye (bib0006) 2017; 55
Wen, Yin, Zhang (bib0022) 2012
Candes, Plan (bib0004) 2010; 98
Xiao, Li, Xu, Tao (bib0023) 2015
Lu, Lin, Yan (bib0015) 2015; 24
Amatriain, Basilico (bib0001) 2012; 6
Lan, Zhang, Yuen (bib0010) 2016
W. Siming, L. Zhouchen, Analysis and improvement of low rank representation for subspace segmentation, arXiv preprint arXiv
Lin, Liu, Su (bib0011) 2011
(2011).
Lu, Vidal (bib0016) 2006
Bennett, Elkan, Liu, Smyth, Tikk (bib0002) 2007; 9
Candès, Recht (bib0005) 2009; 9
Lan, Ma, Yuen (bib0008) 2014
Nguyen, Yang, Shen, Sun (bib0019) 2015; 155
Liu (10.1016/j.neucom.2017.09.052_bib0013) 2010
Lan (10.1016/j.neucom.2017.09.052_bib0009) 2015; 24
Candès (10.1016/j.neucom.2017.09.052_bib0005) 2009; 9
Lu (10.1016/j.neucom.2017.09.052_bib0017) 2012; 135
Amatriain (10.1016/j.neucom.2017.09.052_bib0001) 2012; 6
Lu (10.1016/j.neucom.2017.09.052_bib0016) 2006
Bennett (10.1016/j.neucom.2017.09.052_bib0002) 2007; 9
Zhang (10.1016/j.neucom.2017.09.052_bib0025) 2013; 111
Lan (10.1016/j.neucom.2017.09.052_bib0008) 2014
Wen (10.1016/j.neucom.2017.09.052_bib0022) 2012
Chen (10.1016/j.neucom.2017.09.052_bib0006) 2017; 55
Lan (10.1016/j.neucom.2017.09.052_bib0010) 2016
Nguyen (10.1016/j.neucom.2017.09.052_bib0019) 2015; 155
Lu (10.1016/j.neucom.2017.09.052_bib0015) 2015; 24
Zhang (10.1016/j.neucom.2017.09.052_bib0024) 2014; 145
Cai (10.1016/j.neucom.2017.09.052_bib0003) 2010; 20
Fazel (10.1016/j.neucom.2017.09.052_bib0007) 2002
Xiao (10.1016/j.neucom.2017.09.052_bib0023) 2015
Lin (10.1016/j.neucom.2017.09.052_bib0011) 2011
Liu (10.1016/j.neucom.2017.09.052_bib0012) 2013; 35
Markovsky (10.1016/j.neucom.2017.09.052_bib0018) 2011
Takács (10.1016/j.neucom.2017.09.052_bib0021) 2007; 9
10.1016/j.neucom.2017.09.052_bib0020
Candes (10.1016/j.neucom.2017.09.052_bib0004) 2010; 98
Liu (10.1016/j.neucom.2017.09.052_bib0014) 2015; 24
References_xml – year: 2011
  ident: bib0018
  publication-title: Low Rank Approximation: Algorithms, Implementation, Applications
– reference: (2011).
– start-page: 1194
  year: 2014
  end-page: 1201
  ident: bib0008
  article-title: Multi-cue visual tracking using robust feature-level fusion based on joint sparse representation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 111
  start-page: 13
  year: 2013
  end-page: 20
  ident: bib0025
  article-title: Low-rank representation based discriminative projection for robust feature extraction
  publication-title: Neurocomputing
– start-page: 612
  year: 2011
  end-page: 620
  ident: bib0011
  article-title: Linearized alternating direction method with adaptive penalty for low-rank representation
  publication-title: Advances in Neural Information Processing Systems
– volume: 9
  start-page: 80
  year: 2007
  end-page: 83
  ident: bib0021
  article-title: Major components of the gravity recommendation system
  publication-title: ACM SIGKDD Explor. Newsl.
– volume: 35
  start-page: 171
  year: 2013
  end-page: 184
  ident: bib0012
  article-title: Robust recovery of subspace structures by low-rank representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 593
  year: 2006
  end-page: 600
  ident: bib0016
  article-title: Combined central and subspace clustering for computer vision applications
  publication-title: Proceedings of the 23rd International Conference on Machine Learning
– volume: 9
  start-page: 717
  year: 2009
  end-page: 772
  ident: bib0005
  article-title: Exact matrix completion via convex optimization
  publication-title: Found. Comput. Math.
– volume: 9
  start-page: 51
  year: 2007
  end-page: 52
  ident: bib0002
  article-title: Kdd cup and workshop 2007
  publication-title: ACM SIGKDD Explor. Newsl.
– year: 2002
  ident: bib0007
  publication-title: Matrix rank minimization with applications (Ph.D. thesis)
– year: 2012
  ident: bib0022
  publication-title: Solving a Low-Rank Factorization Model for Matrix Completion by a Nonlinear Successive Over-Relaxation Algorithm
– volume: 155
  start-page: 32
  year: 2015
  end-page: 42
  ident: bib0019
  article-title: Kernel low-rank representation for face recognition
  publication-title: Neurocomputing
– year: 2015
  ident: bib0023
  article-title: FALRR: a fast low rank representation solver
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 24
  start-page: 646
  year: 2015
  end-page: 654
  ident: bib0015
  article-title: Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization
  publication-title: IEEE Trans. Image Process.
– volume: 24
  start-page: 2502
  year: 2015
  end-page: 2514
  ident: bib0014
  article-title: Background subtraction based on low-rank and structured sparse decomposition
  publication-title: IEEE Trans. Image Process.
– volume: 6
  year: 2012
  ident: bib0001
  article-title: Netflix recommendations: beyond the 5 stars (part 1)
  publication-title: Netflix Tech Blog
– volume: 55
  start-page: 168
  year: 2017
  end-page: 193
  ident: bib0006
  article-title: An augmented Lagrangian method for non-Lipschitz nonconvex programming
  publication-title: SIAM J. Numer. Anal.
– volume: 24
  start-page: 5826
  year: 2015
  end-page: 5841
  ident: bib0009
  article-title: Joint sparse representation and robust feature-level fusion for multi-cue visual tracking
  publication-title: IEEE Trans. Image Process.
– volume: 145
  start-page: 369
  year: 2014
  end-page: 373
  ident: bib0024
  article-title: Robust latent low rank representation for subspace clustering
  publication-title: Neurocomputing
– volume: 98
  start-page: 925
  year: 2010
  end-page: 936
  ident: bib0004
  article-title: Matrix completion with noise
  publication-title: Proc. IEEE
– year: 2010
  ident: bib0013
  article-title: Robust subspace segmentation by low-rank representation
  publication-title: Proceedings of International Conference on Machine Learning
– volume: 135
  start-page: 149
  year: 2012
  end-page: 193
  ident: bib0017
  article-title: An augmented lagrangian approach for sparse principal component analysis
  publication-title: Math. Program.
– reference: W. Siming, L. Zhouchen, Analysis and improvement of low rank representation for subspace segmentation, arXiv preprint arXiv:
– volume: 20
  start-page: 1956
  year: 2010
  end-page: 1982
  ident: bib0003
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: SIAM J. Optimiz.
– start-page: 3403
  year: 2016
  end-page: 3410
  ident: bib0010
  article-title: Robust joint discriminative feature learning for visual tracking
  publication-title: Proceedings of the International Joint Conference on Artificial Intelligence
– year: 2002
  ident: 10.1016/j.neucom.2017.09.052_bib0007
– volume: 155
  start-page: 32
  year: 2015
  ident: 10.1016/j.neucom.2017.09.052_bib0019
  article-title: Kernel low-rank representation for face recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.051
– volume: 6
  year: 2012
  ident: 10.1016/j.neucom.2017.09.052_bib0001
  article-title: Netflix recommendations: beyond the 5 stars (part 1)
  publication-title: Netflix Tech Blog
– start-page: 593
  year: 2006
  ident: 10.1016/j.neucom.2017.09.052_bib0016
  article-title: Combined central and subspace clustering for computer vision applications
– start-page: 1194
  year: 2014
  ident: 10.1016/j.neucom.2017.09.052_bib0008
  article-title: Multi-cue visual tracking using robust feature-level fusion based on joint sparse representation
– volume: 135
  start-page: 149
  issue: 1–2
  year: 2012
  ident: 10.1016/j.neucom.2017.09.052_bib0017
  article-title: An augmented lagrangian approach for sparse principal component analysis
  publication-title: Math. Program.
  doi: 10.1007/s10107-011-0452-4
– volume: 55
  start-page: 168
  issue: 1
  year: 2017
  ident: 10.1016/j.neucom.2017.09.052_bib0006
  article-title: An augmented Lagrangian method for non-Lipschitz nonconvex programming
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/15M1052834
– year: 2010
  ident: 10.1016/j.neucom.2017.09.052_bib0013
  article-title: Robust subspace segmentation by low-rank representation
– volume: 145
  start-page: 369
  year: 2014
  ident: 10.1016/j.neucom.2017.09.052_bib0024
  article-title: Robust latent low rank representation for subspace clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.05.022
– volume: 24
  start-page: 646
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2017.09.052_bib0015
  article-title: Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2380155
– volume: 98
  start-page: 925
  issue: 6
  year: 2010
  ident: 10.1016/j.neucom.2017.09.052_bib0004
  article-title: Matrix completion with noise
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2009.2035722
– volume: 111
  start-page: 13
  year: 2013
  ident: 10.1016/j.neucom.2017.09.052_bib0025
  article-title: Low-rank representation based discriminative projection for robust feature extraction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.012
– volume: 9
  start-page: 80
  issue: 2
  year: 2007
  ident: 10.1016/j.neucom.2017.09.052_bib0021
  article-title: Major components of the gravity recommendation system
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1345448.1345466
– volume: 20
  start-page: 1956
  issue: 4
  year: 2010
  ident: 10.1016/j.neucom.2017.09.052_bib0003
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: SIAM J. Optimiz.
  doi: 10.1137/080738970
– volume: 24
  start-page: 5826
  issue: 12
  year: 2015
  ident: 10.1016/j.neucom.2017.09.052_bib0009
  article-title: Joint sparse representation and robust feature-level fusion for multi-cue visual tracking
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2481325
– ident: 10.1016/j.neucom.2017.09.052_bib0020
– year: 2012
  ident: 10.1016/j.neucom.2017.09.052_bib0022
– volume: 9
  start-page: 717
  issue: 6
  year: 2009
  ident: 10.1016/j.neucom.2017.09.052_bib0005
  article-title: Exact matrix completion via convex optimization
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-009-9045-5
– volume: 9
  start-page: 51
  issue: 2
  year: 2007
  ident: 10.1016/j.neucom.2017.09.052_bib0002
  article-title: Kdd cup and workshop 2007
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1345448.1345459
– start-page: 612
  year: 2011
  ident: 10.1016/j.neucom.2017.09.052_bib0011
  article-title: Linearized alternating direction method with adaptive penalty for low-rank representation
– year: 2011
  ident: 10.1016/j.neucom.2017.09.052_bib0018
– start-page: 3403
  year: 2016
  ident: 10.1016/j.neucom.2017.09.052_bib0010
  article-title: Robust joint discriminative feature learning for visual tracking
– volume: 24
  start-page: 2502
  issue: 8
  year: 2015
  ident: 10.1016/j.neucom.2017.09.052_bib0014
  article-title: Background subtraction based on low-rank and structured sparse decomposition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2419084
– volume: 35
  start-page: 171
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2017.09.052_bib0012
  article-title: Robust recovery of subspace structures by low-rank representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.88
– year: 2015
  ident: 10.1016/j.neucom.2017.09.052_bib0023
  article-title: FALRR: a fast low rank representation solver
SSID ssj0017129
Score 2.3160777
Snippet This paper proposes a valid and fast algorithm for low-rank matrix factorization. There are multiple applications for low-rank matrix factorization, and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1012
SubjectTerms Augmented Lagrangian method
Low-rank representation
Matrix factorization
Sparseness
Title An algorithm for low-rank matrix factorization and its applications
URI https://dx.doi.org/10.1016/j.neucom.2017.09.052
Volume 275
WOSCitedRecordID wos000418370200096&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELbYdg97gX2Kx7LygRsyStw4jo-hYsWuUMWhK1VcIsd2tkVtivqA8u8ZJ05IAXXhsJcoshLHyXwZfzMezyB0lKUmlDpQhPsBGCiUC5JmPiXwK2kRGJb6aVG15IL3etFgIC5dEPu8KCfA8zxarcTNfxU1tIGw7dbZN4i77hQa4ByEDkcQOxxfJfg4P5bjv1Mw-oeTIohwPL0jtjT78cSm41-5Ejtu_2W9eNBcyW4y1iJ7hypqPzivQjyxyRW0RVLtRei6TR6ncnS_rDWJ80VfjZ61DKfLO-kmTedz8G24W6WsnfOQMgLMcE2PUs4amtDmDWvMqsBjvBc1duk8uD7JzdKG78DTeJF4ltHHGapalX8ycdXhhFWk2nVS9pLYXhJPJNDLO9SGgYmohdrxr7PB73qJifu0TMToXqXaV1kE_z0fzcu8pcFF-h_RtjMicFwK_xPaMvlntFMV6MBOX39B3TjHNRYwYAFXWMAlFvAaFjBgAQMWcBMLX9Gfn2f97jlxVTOIAvNvQWSkpQQz1IQelaCRo44naeozxUTH10CotdBGGRXoUKhIc556lKs0lBnTLACC-g218mludhFm2qcylF7KDA-MBlM0inTGwiDrKAU8bw91qm-SKJdS3lY2GSebJLKHSH3XTZlS5R_X8-pzJ44WlnQvAQxtvHP_jU86QB8e0f4dtRazpTlE79XtYjSf_XAAegBax4aL
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithm+for+low-rank+matrix+factorization+and+its+applications&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Chen%2C+Baiyu&rft.au=Yang%2C+Zi&rft.au=Yang%2C+Zhouwang&rft.date=2018-01-31&rft.issn=0925-2312&rft.volume=275&rft.spage=1012&rft.epage=1020&rft_id=info:doi/10.1016%2Fj.neucom.2017.09.052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2017_09_052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon