An algorithm for low-rank matrix factorization and its applications
This paper proposes a valid and fast algorithm for low-rank matrix factorization. There are multiple applications for low-rank matrix factorization, and numerous algorithms have been developed to solve this problem. However, many algorithms do not use rank directly; instead, they minimize a nuclear...
Saved in:
| Published in: | Neurocomputing (Amsterdam) Vol. 275; pp. 1012 - 1020 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
31.01.2018
|
| Subjects: | |
| ISSN: | 0925-2312, 1872-8286 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes a valid and fast algorithm for low-rank matrix factorization. There are multiple applications for low-rank matrix factorization, and numerous algorithms have been developed to solve this problem. However, many algorithms do not use rank directly; instead, they minimize a nuclear norm by using Singular Value Decomposition (SVD), which requires a huge time cost. In addition, these algorithms often fix the dimension of the factorized matrix, meaning that one must first find an optimum dimension for the factorized matrix in order to obtain a solution. Unfortunately, the optimum dimension is unknown in many practical problems, such as matrix completion and recommender systems. Therefore, it is necessary to develop a faster algorithm that can also estimate the optimum dimension. In this paper, we use the Hidden Matrix Factorized Augmented Lagrangian Method to solve low-rank matrix factorizations. We also add a tool to dynamically estimate the optimum dimension and adjust it while simultaneously running the algorithm. Additionally, in the era of Big Data, there will be more and more large, sparse data. In face of such highly sparse data, our algorithm has the potential to be more effective than other algorithms. We applied it to some practical problems, e.g. Low-Rank Representation(LRR), and matrix completion with constraint. In numerical experiments, it has performed well when applied to both synthetic data and real-world data. |
|---|---|
| AbstractList | This paper proposes a valid and fast algorithm for low-rank matrix factorization. There are multiple applications for low-rank matrix factorization, and numerous algorithms have been developed to solve this problem. However, many algorithms do not use rank directly; instead, they minimize a nuclear norm by using Singular Value Decomposition (SVD), which requires a huge time cost. In addition, these algorithms often fix the dimension of the factorized matrix, meaning that one must first find an optimum dimension for the factorized matrix in order to obtain a solution. Unfortunately, the optimum dimension is unknown in many practical problems, such as matrix completion and recommender systems. Therefore, it is necessary to develop a faster algorithm that can also estimate the optimum dimension. In this paper, we use the Hidden Matrix Factorized Augmented Lagrangian Method to solve low-rank matrix factorizations. We also add a tool to dynamically estimate the optimum dimension and adjust it while simultaneously running the algorithm. Additionally, in the era of Big Data, there will be more and more large, sparse data. In face of such highly sparse data, our algorithm has the potential to be more effective than other algorithms. We applied it to some practical problems, e.g. Low-Rank Representation(LRR), and matrix completion with constraint. In numerical experiments, it has performed well when applied to both synthetic data and real-world data. |
| Author | Yang, Zhouwang Chen, Baiyu Yang, Zi |
| Author_xml | – sequence: 1 givenname: Baiyu surname: Chen fullname: Chen, Baiyu organization: University of Science and Technology of China, Hefei, China – sequence: 2 givenname: Zi surname: Yang fullname: Yang, Zi organization: University of California, San Diego, USA – sequence: 3 givenname: Zhouwang surname: Yang fullname: Yang, Zhouwang email: yangzw@ustc.edu.cn organization: University of Science and Technology of China, Hefei, China |
| BookMark | eNqFkMtOwzAQRS1UJErhD1jkBxJsJ05sFkhVxUuqxAbW1nTsgEsSV7Z5fj1py4oFLEYjzdx7NXOOyWTwgyXkjNGCUVafr4vBvqLvC05ZU1BVUMEPyJTJhueSy3pCplRxkfOS8SNyHOOajkLG1ZQs5kMG3ZMPLj33WetD1vn3PMDwkvWQgvvIWsA0rr8gOT9qB5O5FDPYbDqHu1k8IYctdNGe_vQZeby-eljc5sv7m7vFfJljSeuUgzQAlWxsTTlUXMiSAl8xgUKVzCgxlrFosTK1QmmaZkV5g6saWmFEVVfljFzsczH4GINtNbq0OyEFcJ1mVG9x6LXe49BbHJoqPeIYzdUv8ya4HsLnf7bLvc2Oj705G3REZwe0xgWLSRvv_g74Bt50f1Q |
| CitedBy_id | crossref_primary_10_1155_2022_8662238 crossref_primary_10_3389_fgene_2021_810875 crossref_primary_10_1016_j_neucom_2018_10_065 crossref_primary_10_1049_ipr2_13241 crossref_primary_10_1109_JAS_2023_123450 crossref_primary_10_1109_ACCESS_2020_3000816 crossref_primary_10_1016_j_knosys_2022_109210 crossref_primary_10_1016_j_neucom_2019_08_083 crossref_primary_10_1016_j_knosys_2018_09_028 crossref_primary_10_1109_TCYB_2022_3196444 crossref_primary_10_12677_aam_2024_1312524 crossref_primary_10_1016_j_ijleo_2020_164214 crossref_primary_10_1016_j_neucom_2018_08_045 crossref_primary_10_1007_s13042_021_01361_1 crossref_primary_10_1080_09500340_2020_1764119 crossref_primary_10_12677_aam_2024_1311480 crossref_primary_10_1016_j_neucom_2018_05_122 |
| Cites_doi | 10.1016/j.neucom.2014.12.051 10.1007/s10107-011-0452-4 10.1137/15M1052834 10.1016/j.neucom.2014.05.022 10.1109/TIP.2014.2380155 10.1109/JPROC.2009.2035722 10.1016/j.neucom.2012.12.012 10.1145/1345448.1345466 10.1137/080738970 10.1109/TIP.2015.2481325 10.1007/s10208-009-9045-5 10.1145/1345448.1345459 10.1109/TIP.2015.2419084 10.1109/TPAMI.2012.88 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2017.09.052 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 1020 |
| ExternalDocumentID | 10_1016_j_neucom_2017_09_052 S0925231217315710 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-a8daa487e602a425830a2b15c5931d951d9decec4d69c8d77b027cb6af5d54643 |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418370200096&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Tue Nov 18 21:58:30 EST 2025 Sat Nov 29 07:14:44 EST 2025 Fri Feb 23 02:46:29 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Augmented Lagrangian method Matrix factorization Low-rank representation Sparseness |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-a8daa487e602a425830a2b15c5931d951d9decec4d69c8d77b027cb6af5d54643 |
| PageCount | 9 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2017_09_052 crossref_primary_10_1016_j_neucom_2017_09_052 elsevier_sciencedirect_doi_10_1016_j_neucom_2017_09_052 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-31 |
| PublicationDateYYYYMMDD | 2018-01-31 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-31 day: 31 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhang, Lin, Zhang, Gao (bib0024) 2014; 145 Liu, Zhao, Yao, Qi (bib0014) 2015; 24 Zhang, Yang (bib0025) 2013; 111 Takács, Pilászy, Németh, Tikk (bib0021) 2007; 9 Lan, Ma, Yuen, Chellappa (bib0009) 2015; 24 Lu, Zhang (bib0017) 2012; 135 Liu, Lin, Yu (bib0013) 2010 Liu, Lin, Yan, Sun, Yu, Ma (bib0012) 2013; 35 Cai, Cand‘es, Shen (bib0003) 2010; 20 Fazel (bib0007) 2002 Markovsky (bib0018) 2011 Chen, Guo, Lu, Ye (bib0006) 2017; 55 Wen, Yin, Zhang (bib0022) 2012 Candes, Plan (bib0004) 2010; 98 Xiao, Li, Xu, Tao (bib0023) 2015 Lu, Lin, Yan (bib0015) 2015; 24 Amatriain, Basilico (bib0001) 2012; 6 Lan, Zhang, Yuen (bib0010) 2016 W. Siming, L. Zhouchen, Analysis and improvement of low rank representation for subspace segmentation, arXiv preprint arXiv Lin, Liu, Su (bib0011) 2011 (2011). Lu, Vidal (bib0016) 2006 Bennett, Elkan, Liu, Smyth, Tikk (bib0002) 2007; 9 Candès, Recht (bib0005) 2009; 9 Lan, Ma, Yuen (bib0008) 2014 Nguyen, Yang, Shen, Sun (bib0019) 2015; 155 Liu (10.1016/j.neucom.2017.09.052_bib0013) 2010 Lan (10.1016/j.neucom.2017.09.052_bib0009) 2015; 24 Candès (10.1016/j.neucom.2017.09.052_bib0005) 2009; 9 Lu (10.1016/j.neucom.2017.09.052_bib0017) 2012; 135 Amatriain (10.1016/j.neucom.2017.09.052_bib0001) 2012; 6 Lu (10.1016/j.neucom.2017.09.052_bib0016) 2006 Bennett (10.1016/j.neucom.2017.09.052_bib0002) 2007; 9 Zhang (10.1016/j.neucom.2017.09.052_bib0025) 2013; 111 Lan (10.1016/j.neucom.2017.09.052_bib0008) 2014 Wen (10.1016/j.neucom.2017.09.052_bib0022) 2012 Chen (10.1016/j.neucom.2017.09.052_bib0006) 2017; 55 Lan (10.1016/j.neucom.2017.09.052_bib0010) 2016 Nguyen (10.1016/j.neucom.2017.09.052_bib0019) 2015; 155 Lu (10.1016/j.neucom.2017.09.052_bib0015) 2015; 24 Zhang (10.1016/j.neucom.2017.09.052_bib0024) 2014; 145 Cai (10.1016/j.neucom.2017.09.052_bib0003) 2010; 20 Fazel (10.1016/j.neucom.2017.09.052_bib0007) 2002 Xiao (10.1016/j.neucom.2017.09.052_bib0023) 2015 Lin (10.1016/j.neucom.2017.09.052_bib0011) 2011 Liu (10.1016/j.neucom.2017.09.052_bib0012) 2013; 35 Markovsky (10.1016/j.neucom.2017.09.052_bib0018) 2011 Takács (10.1016/j.neucom.2017.09.052_bib0021) 2007; 9 10.1016/j.neucom.2017.09.052_bib0020 Candes (10.1016/j.neucom.2017.09.052_bib0004) 2010; 98 Liu (10.1016/j.neucom.2017.09.052_bib0014) 2015; 24 |
| References_xml | – year: 2011 ident: bib0018 publication-title: Low Rank Approximation: Algorithms, Implementation, Applications – reference: (2011). – start-page: 1194 year: 2014 end-page: 1201 ident: bib0008 article-title: Multi-cue visual tracking using robust feature-level fusion based on joint sparse representation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 111 start-page: 13 year: 2013 end-page: 20 ident: bib0025 article-title: Low-rank representation based discriminative projection for robust feature extraction publication-title: Neurocomputing – start-page: 612 year: 2011 end-page: 620 ident: bib0011 article-title: Linearized alternating direction method with adaptive penalty for low-rank representation publication-title: Advances in Neural Information Processing Systems – volume: 9 start-page: 80 year: 2007 end-page: 83 ident: bib0021 article-title: Major components of the gravity recommendation system publication-title: ACM SIGKDD Explor. Newsl. – volume: 35 start-page: 171 year: 2013 end-page: 184 ident: bib0012 article-title: Robust recovery of subspace structures by low-rank representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 593 year: 2006 end-page: 600 ident: bib0016 article-title: Combined central and subspace clustering for computer vision applications publication-title: Proceedings of the 23rd International Conference on Machine Learning – volume: 9 start-page: 717 year: 2009 end-page: 772 ident: bib0005 article-title: Exact matrix completion via convex optimization publication-title: Found. Comput. Math. – volume: 9 start-page: 51 year: 2007 end-page: 52 ident: bib0002 article-title: Kdd cup and workshop 2007 publication-title: ACM SIGKDD Explor. Newsl. – year: 2002 ident: bib0007 publication-title: Matrix rank minimization with applications (Ph.D. thesis) – year: 2012 ident: bib0022 publication-title: Solving a Low-Rank Factorization Model for Matrix Completion by a Nonlinear Successive Over-Relaxation Algorithm – volume: 155 start-page: 32 year: 2015 end-page: 42 ident: bib0019 article-title: Kernel low-rank representation for face recognition publication-title: Neurocomputing – year: 2015 ident: bib0023 article-title: FALRR: a fast low rank representation solver publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 24 start-page: 646 year: 2015 end-page: 654 ident: bib0015 article-title: Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization publication-title: IEEE Trans. Image Process. – volume: 24 start-page: 2502 year: 2015 end-page: 2514 ident: bib0014 article-title: Background subtraction based on low-rank and structured sparse decomposition publication-title: IEEE Trans. Image Process. – volume: 6 year: 2012 ident: bib0001 article-title: Netflix recommendations: beyond the 5 stars (part 1) publication-title: Netflix Tech Blog – volume: 55 start-page: 168 year: 2017 end-page: 193 ident: bib0006 article-title: An augmented Lagrangian method for non-Lipschitz nonconvex programming publication-title: SIAM J. Numer. Anal. – volume: 24 start-page: 5826 year: 2015 end-page: 5841 ident: bib0009 article-title: Joint sparse representation and robust feature-level fusion for multi-cue visual tracking publication-title: IEEE Trans. Image Process. – volume: 145 start-page: 369 year: 2014 end-page: 373 ident: bib0024 article-title: Robust latent low rank representation for subspace clustering publication-title: Neurocomputing – volume: 98 start-page: 925 year: 2010 end-page: 936 ident: bib0004 article-title: Matrix completion with noise publication-title: Proc. IEEE – year: 2010 ident: bib0013 article-title: Robust subspace segmentation by low-rank representation publication-title: Proceedings of International Conference on Machine Learning – volume: 135 start-page: 149 year: 2012 end-page: 193 ident: bib0017 article-title: An augmented lagrangian approach for sparse principal component analysis publication-title: Math. Program. – reference: W. Siming, L. Zhouchen, Analysis and improvement of low rank representation for subspace segmentation, arXiv preprint arXiv: – volume: 20 start-page: 1956 year: 2010 end-page: 1982 ident: bib0003 article-title: A singular value thresholding algorithm for matrix completion publication-title: SIAM J. Optimiz. – start-page: 3403 year: 2016 end-page: 3410 ident: bib0010 article-title: Robust joint discriminative feature learning for visual tracking publication-title: Proceedings of the International Joint Conference on Artificial Intelligence – year: 2002 ident: 10.1016/j.neucom.2017.09.052_bib0007 – volume: 155 start-page: 32 year: 2015 ident: 10.1016/j.neucom.2017.09.052_bib0019 article-title: Kernel low-rank representation for face recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.051 – volume: 6 year: 2012 ident: 10.1016/j.neucom.2017.09.052_bib0001 article-title: Netflix recommendations: beyond the 5 stars (part 1) publication-title: Netflix Tech Blog – start-page: 593 year: 2006 ident: 10.1016/j.neucom.2017.09.052_bib0016 article-title: Combined central and subspace clustering for computer vision applications – start-page: 1194 year: 2014 ident: 10.1016/j.neucom.2017.09.052_bib0008 article-title: Multi-cue visual tracking using robust feature-level fusion based on joint sparse representation – volume: 135 start-page: 149 issue: 1–2 year: 2012 ident: 10.1016/j.neucom.2017.09.052_bib0017 article-title: An augmented lagrangian approach for sparse principal component analysis publication-title: Math. Program. doi: 10.1007/s10107-011-0452-4 – volume: 55 start-page: 168 issue: 1 year: 2017 ident: 10.1016/j.neucom.2017.09.052_bib0006 article-title: An augmented Lagrangian method for non-Lipschitz nonconvex programming publication-title: SIAM J. Numer. Anal. doi: 10.1137/15M1052834 – year: 2010 ident: 10.1016/j.neucom.2017.09.052_bib0013 article-title: Robust subspace segmentation by low-rank representation – volume: 145 start-page: 369 year: 2014 ident: 10.1016/j.neucom.2017.09.052_bib0024 article-title: Robust latent low rank representation for subspace clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.05.022 – volume: 24 start-page: 646 issue: 2 year: 2015 ident: 10.1016/j.neucom.2017.09.052_bib0015 article-title: Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2380155 – volume: 98 start-page: 925 issue: 6 year: 2010 ident: 10.1016/j.neucom.2017.09.052_bib0004 article-title: Matrix completion with noise publication-title: Proc. IEEE doi: 10.1109/JPROC.2009.2035722 – volume: 111 start-page: 13 year: 2013 ident: 10.1016/j.neucom.2017.09.052_bib0025 article-title: Low-rank representation based discriminative projection for robust feature extraction publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.012 – volume: 9 start-page: 80 issue: 2 year: 2007 ident: 10.1016/j.neucom.2017.09.052_bib0021 article-title: Major components of the gravity recommendation system publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1345448.1345466 – volume: 20 start-page: 1956 issue: 4 year: 2010 ident: 10.1016/j.neucom.2017.09.052_bib0003 article-title: A singular value thresholding algorithm for matrix completion publication-title: SIAM J. Optimiz. doi: 10.1137/080738970 – volume: 24 start-page: 5826 issue: 12 year: 2015 ident: 10.1016/j.neucom.2017.09.052_bib0009 article-title: Joint sparse representation and robust feature-level fusion for multi-cue visual tracking publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2481325 – ident: 10.1016/j.neucom.2017.09.052_bib0020 – year: 2012 ident: 10.1016/j.neucom.2017.09.052_bib0022 – volume: 9 start-page: 717 issue: 6 year: 2009 ident: 10.1016/j.neucom.2017.09.052_bib0005 article-title: Exact matrix completion via convex optimization publication-title: Found. Comput. Math. doi: 10.1007/s10208-009-9045-5 – volume: 9 start-page: 51 issue: 2 year: 2007 ident: 10.1016/j.neucom.2017.09.052_bib0002 article-title: Kdd cup and workshop 2007 publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1345448.1345459 – start-page: 612 year: 2011 ident: 10.1016/j.neucom.2017.09.052_bib0011 article-title: Linearized alternating direction method with adaptive penalty for low-rank representation – year: 2011 ident: 10.1016/j.neucom.2017.09.052_bib0018 – start-page: 3403 year: 2016 ident: 10.1016/j.neucom.2017.09.052_bib0010 article-title: Robust joint discriminative feature learning for visual tracking – volume: 24 start-page: 2502 issue: 8 year: 2015 ident: 10.1016/j.neucom.2017.09.052_bib0014 article-title: Background subtraction based on low-rank and structured sparse decomposition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2419084 – volume: 35 start-page: 171 issue: 1 year: 2013 ident: 10.1016/j.neucom.2017.09.052_bib0012 article-title: Robust recovery of subspace structures by low-rank representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.88 – year: 2015 ident: 10.1016/j.neucom.2017.09.052_bib0023 article-title: FALRR: a fast low rank representation solver |
| SSID | ssj0017129 |
| Score | 2.3160777 |
| Snippet | This paper proposes a valid and fast algorithm for low-rank matrix factorization. There are multiple applications for low-rank matrix factorization, and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1012 |
| SubjectTerms | Augmented Lagrangian method Low-rank representation Matrix factorization Sparseness |
| Title | An algorithm for low-rank matrix factorization and its applications |
| URI | https://dx.doi.org/10.1016/j.neucom.2017.09.052 |
| Volume | 275 |
| WOSCitedRecordID | wos000418370200096&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbo0kMvtJRW0Jd84IZcJU4cx8d0tVXhgDiAtOISObZTdrWbINiwy7_vOHFCeAi6By5RZCXOYz7NfDMezyC0H3nSgKHMiY4yj4Rc5lYP-oTKGLwxHcVMhnWzCX58HI_H4sQlsV_X7QR4UcSrlbh8VVHDGAjbbp1dQ9zdpDAA5yB0OILY4fhfgk-KAzn7W4LTfzGvkwhn5ZLY1uwHc1uOf-Va7Lj9l93iQX8lu89Y6-odqu794KIKydwWV9AWSV0UYeg2efySk9uq0yQuFn0-eTRyUVZL6Yymizn4Nt2tVdYueEgZAWZ4T49Sznqa0NYN61lV4DHekxq7CR5Mfxamsuk78DReF55l9M5CtavyDwxXl07YZqpN02aW1M6SeiKFWd6gTXgxEQ_QZnI4Gh91S0zcp00hRvcp7b7KOvnv8ds8zVt6XOT0A9pyTgROGuFvow1TfETv2wYd2OnrHTRMCtxhAQMWcIsF3GAB38MCBixgwALuY-ETOvs9Oh3-Ia5rBlHg_i2IjLWU4IaayKMSNHIceJJmPlNMBL4GQq2FNsqoUEdCxZrzzKNcZZHMmWYhENTPaFCUhdlFOKDaMyrPlRJ-KHNfBrY5ArjAgpksNPkeCtp_kipXUt52Npmlz0lkD5HursumpMoL1_P2d6eOFjZ0LwUMPXvnlzWf9BW9u0P7NzRYXFXmO3qrbhaT66sfDkD_AC2Yhfc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithm+for+low-rank+matrix+factorization+and+its+applications&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Chen%2C+Baiyu&rft.au=Yang%2C+Zi&rft.au=Yang%2C+Zhouwang&rft.date=2018-01-31&rft.issn=0925-2312&rft.volume=275&rft.spage=1012&rft.epage=1020&rft_id=info:doi/10.1016%2Fj.neucom.2017.09.052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2017_09_052 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |