problexity—An open-source Python library for supervised learning problem complexity assessment

The problem’s complexity assessment is an essential element of many topics in the supervised learning domain. It plays a significant role in meta-learning – becoming the basis for determining meta-attributes or multi-criteria optimization – allowing the evaluation of the training set resampling with...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 521; s. 126 - 136
Hlavní autori: Komorniczak, Joanna, Ksieniewicz, Paweł
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 07.02.2023
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The problem’s complexity assessment is an essential element of many topics in the supervised learning domain. It plays a significant role in meta-learning – becoming the basis for determining meta-attributes or multi-criteria optimization – allowing the evaluation of the training set resampling without needing to rebuild the recognition model. The tools currently available for the academic community, which would enable the calculation of problem complexity measures, are available only as libraries of the C++ and R languages. This paper describes the software module that allows for the estimation of 22 classification complexity measures and 12 regression complexity measures for the Python language – compatible with the scikit-learn programming interface – allowing for the implementation of research using them in the most popular programming environment of the machine learning community.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2022.11.056