On a Stokes hemivariational inequality for incompressible fluid flows with damping

In this paper, a Stokes hemivariational inequality is studied for incompressible fluid flows with the damping effect. The hemivariational inequality feature is caused by the presence of a nonsmooth slip boundary condition of friction type. Well-posedness of the Stokes hemivariational inequality is e...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis: real world applications Vol. 79; p. 104131
Main Authors: Han, Weimin, Qiu, Hailong, Mei, Liquan
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.10.2024
Subjects:
ISSN:1468-1218, 1878-5719
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, a Stokes hemivariational inequality is studied for incompressible fluid flows with the damping effect. The hemivariational inequality feature is caused by the presence of a nonsmooth slip boundary condition of friction type. Well-posedness of the Stokes hemivariational inequality is established through the consideration of a minimization problem. Mixed finite element methods are introduced to solve the Stokes hemivariational inequality and error estimates are derived for the mixed finite element solutions. The error estimates are of optimal order for low-order mixed element pairs under suitable solution regularity assumptions. An efficient iterative algorithm is introduced to solve the mixed finite element system. Numerical results are reported on the performance of the proposed algorithm and the numerical convergence orders of the finite element solutions.
AbstractList In this paper, a Stokes hemivariational inequality is studied for incompressible fluid flows with the damping effect. The hemivariational inequality feature is caused by the presence of a nonsmooth slip boundary condition of friction type. Well-posedness of the Stokes hemivariational inequality is established through the consideration of a minimization problem. Mixed finite element methods are introduced to solve the Stokes hemivariational inequality and error estimates are derived for the mixed finite element solutions. The error estimates are of optimal order for low-order mixed element pairs under suitable solution regularity assumptions. An efficient iterative algorithm is introduced to solve the mixed finite element system. Numerical results are reported on the performance of the proposed algorithm and the numerical convergence orders of the finite element solutions.
ArticleNumber 104131
Author Qiu, Hailong
Mei, Liquan
Han, Weimin
Author_xml – sequence: 1
  givenname: Weimin
  surname: Han
  fullname: Han, Weimin
  email: weimin-han@uiowa.edu
  organization: Department of Mathematics, University of Iowa, Iowa City, IA 52242-1410, USA
– sequence: 2
  givenname: Hailong
  surname: Qiu
  fullname: Qiu, Hailong
  email: hail_qiu@126.com
  organization: School of Mathematics and Physics, Yancheng Institute of Technology, Yancheng, 224051, China
– sequence: 3
  givenname: Liquan
  surname: Mei
  fullname: Mei, Liquan
  email: lqmei@xjtu.edu.cn
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, China
BookMark eNqFkMtKAzEUhoNUsK2-gYu8wNRkJnNzIUjxBoWCl3XIJCc2dWZSk7Slb2_quHKhm3P5Od-B_5-gUW97QOiSkhkltLhaz6Lg9mKWkpRFidGMnqAxrcoqyUtaj-LMiiqhKa3O0MT7NSG0jEdj9LzsscAvwX6AxyvozE44I4KxvWix6eFzK1oTDlhbF1dpu40D703TAtbt1qhY7d7jvQkrrES3Mf37OTrVovVw8dOn6O3-7nX-mCyWD0_z20UiM1KEpM4q0DorNMmqRjcsTzNVKi1FmdOGQJnLWmnGUkFKltapzrXKNSmAUU0V1CSbIjb8lc5670DzjTOdcAdOCT_mwtd8yIUfc-FDLhG7_oVJE74dBydM-x98M8AQje0MOO6lgV6CMg5k4Mqavx98AR_thQU
CitedBy_id crossref_primary_10_1016_j_nonrwa_2025_104439
Cites_doi 10.1093/imanum/drz032
10.1137/140963248
10.1142/S0218202505000686
10.1007/s00220-003-0859-8
10.1016/j.cma.2016.03.026
10.1016/j.aml.2021.107401
10.1016/j.nonrwa.2020.103114
10.1080/01630563.2021.1881541
10.1007/s10915-018-0644-7
10.1002/fld.2574
10.1007/s10255-011-0063-0
10.1016/j.jmaa.2004.12.033
10.1007/BF02576171
10.1007/s00211-010-0354-z
10.1007/978-1-4614-4232-5
10.1090/S0002-9947-02-03034-9
10.1016/j.nonrwa.2016.02.005
10.1002/mma.802
10.1016/j.amc.2008.06.035
10.1017/S0962492919000023
10.1016/j.camwa.2019.04.024
10.1007/s10915-021-01614-9
10.3846/1392-6292.2007.12.483-495
10.1016/S0022-247X(03)00009-X
10.1007/s13160-012-0098-5
10.1137/120896396
10.1081/PDE-120020499
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nonrwa.2024.104131
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1878-5719
ExternalDocumentID 10_1016_j_nonrwa_2024_104131
S1468121824000713
GrantInformation_xml – fundername: Natural Science Foundation of China
  grantid: 11701498
– fundername: Natural Science Foundation of China
  grantid: 12171385
– fundername: Simons Foundation Collaboration Grants
  grantid: 850737
– fundername: European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skodowska-Curie
  grantid: 823731–CONMECH
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABMAC
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J9A
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
XPP
YQT
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-938eff36f038bfb4523d7dfca751b0e75c9df442a074292f5fd5f06e41f1de903
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001235584900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1468-1218
IngestDate Sat Nov 29 06:12:38 EST 2025
Tue Nov 18 21:55:31 EST 2025
Tue Jun 18 08:50:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Hemivariational inequality
Mixed finite element method
Error estimation
Minimization principle
Stokes equations with damping
Well-posedness
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-938eff36f038bfb4523d7dfca751b0e75c9df442a074292f5fd5f06e41f1de903
ParticipantIDs crossref_primary_10_1016_j_nonrwa_2024_104131
crossref_citationtrail_10_1016_j_nonrwa_2024_104131
elsevier_sciencedirect_doi_10_1016_j_nonrwa_2024_104131
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Nonlinear analysis: real world applications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Le Roux, Tani (b5) 2007; 30
Saidi (b6) 2007; 12
Kashiwabara (b10) 2013; 51
Bresch, Desjardins, Lin (b19) 2003; 28
Témam (b42) 1979
Le Roux (b4) 2005; 15
Fang, Czuprynski, Han, Cheng, Dai (b14) 2020; 40
Haslinger, Miettinen, Panagiotopoulos (b29) 1999
Fang, Han, Migórski, Sofonea (b15) 2016; 31
Qiu, Mei (b21) 2019; 78
Panagiotopoulos (b22) 1983; 42
Migórski, Ochal, Sofonea (b27) 2013; Vol. 26
Fan, Liu, Gao (b40) 2003; 279
Fujita (b1) 1993
Li, Li (b45) 2011; 17
Fujita (b2) 1994; 888
Migórski (b16) 2013
Carl, Le, Motreanu (b26) 2007
Ekeland, Temam (b36) 1976
Sofonea, Migórski (b28) 2018
Li, Li (b13) 2008; 204
Fujita, Kawarada (b3) 1998; 11
Brenner, Scott (b44) 2008
Jing, Han, Yan, Wang (b8) 2018; 76
Migórski, Ochal (b17) 2005; 306
Kashiwabara (b9) 2013; 30
Han (b33) 2021; 42
Atkinson, Han (b41) 2009
Han, Migórski, Sofonea (b30) 2014; 46
Arnold, Brezzi, Fortin (b43) 1984; 21
Djoko, Koko (b7) 2016; 305
Bresch, Desjardins (b18) 2003; 238
Nečas, Hlavaček (b37) 1981
Li, An (b12) 2012; 69
Naniewicz, Panagiotopoulos (b24) 1995
Li, An (b11) 2011; 117
Han, Czuprynski, Jing (b39) 2021; 89
Ling, Han (b34) 2021; 121
Rammaha, Strei (b20) 2002; 202
Ciarlet (b38) 1978
Clarke (b35) 1983
Carl, Le (b25) 2021
Han (b32) 2020; 54
Panagiotopoulos (b23) 1993
Han, Sofonea (b31) 2019; 28
Brenner (10.1016/j.nonrwa.2024.104131_b44) 2008
Fujita (10.1016/j.nonrwa.2024.104131_b1) 1993
Fujita (10.1016/j.nonrwa.2024.104131_b3) 1998; 11
Han (10.1016/j.nonrwa.2024.104131_b39) 2021; 89
Fang (10.1016/j.nonrwa.2024.104131_b15) 2016; 31
Carl (10.1016/j.nonrwa.2024.104131_b25) 2021
Kashiwabara (10.1016/j.nonrwa.2024.104131_b9) 2013; 30
Clarke (10.1016/j.nonrwa.2024.104131_b35) 1983
Han (10.1016/j.nonrwa.2024.104131_b31) 2019; 28
Fan (10.1016/j.nonrwa.2024.104131_b40) 2003; 279
Haslinger (10.1016/j.nonrwa.2024.104131_b29) 1999
Saidi (10.1016/j.nonrwa.2024.104131_b6) 2007; 12
Ling (10.1016/j.nonrwa.2024.104131_b34) 2021; 121
Migórski (10.1016/j.nonrwa.2024.104131_b17) 2005; 306
Rammaha (10.1016/j.nonrwa.2024.104131_b20) 2002; 202
Ekeland (10.1016/j.nonrwa.2024.104131_b36) 1976
Kashiwabara (10.1016/j.nonrwa.2024.104131_b10) 2013; 51
Le Roux (10.1016/j.nonrwa.2024.104131_b4) 2005; 15
Migórski (10.1016/j.nonrwa.2024.104131_b27) 2013; Vol. 26
Djoko (10.1016/j.nonrwa.2024.104131_b7) 2016; 305
Han (10.1016/j.nonrwa.2024.104131_b30) 2014; 46
Le Roux (10.1016/j.nonrwa.2024.104131_b5) 2007; 30
Naniewicz (10.1016/j.nonrwa.2024.104131_b24) 1995
Nečas (10.1016/j.nonrwa.2024.104131_b37) 1981
Ciarlet (10.1016/j.nonrwa.2024.104131_b38) 1978
Han (10.1016/j.nonrwa.2024.104131_b32) 2020; 54
Fujita (10.1016/j.nonrwa.2024.104131_b2) 1994; 888
Bresch (10.1016/j.nonrwa.2024.104131_b19) 2003; 28
Li (10.1016/j.nonrwa.2024.104131_b12) 2012; 69
Jing (10.1016/j.nonrwa.2024.104131_b8) 2018; 76
Témam (10.1016/j.nonrwa.2024.104131_b42) 1979
Li (10.1016/j.nonrwa.2024.104131_b13) 2008; 204
Bresch (10.1016/j.nonrwa.2024.104131_b18) 2003; 238
Qiu (10.1016/j.nonrwa.2024.104131_b21) 2019; 78
Atkinson (10.1016/j.nonrwa.2024.104131_b41) 2009
Li (10.1016/j.nonrwa.2024.104131_b11) 2011; 117
Sofonea (10.1016/j.nonrwa.2024.104131_b28) 2018
Han (10.1016/j.nonrwa.2024.104131_b33) 2021; 42
Panagiotopoulos (10.1016/j.nonrwa.2024.104131_b23) 1993
Panagiotopoulos (10.1016/j.nonrwa.2024.104131_b22) 1983; 42
Fang (10.1016/j.nonrwa.2024.104131_b14) 2020; 40
Arnold (10.1016/j.nonrwa.2024.104131_b43) 1984; 21
Li (10.1016/j.nonrwa.2024.104131_b45) 2011; 17
Carl (10.1016/j.nonrwa.2024.104131_b26) 2007
Migórski (10.1016/j.nonrwa.2024.104131_b16) 2013
References_xml – volume: 69
  start-page: 550
  year: 2012
  end-page: 566
  ident: b12
  article-title: Penalty finite element method for Navier–Stokes equations with nonlinear slip boundary conditions
  publication-title: Internat. J. Numer. Methods Fluids
– volume: 46
  start-page: 3891
  year: 2014
  end-page: 3912
  ident: b30
  article-title: A class of variational–hemivariational inequalities with applications to frictional contact problems
  publication-title: SIAM J. Math. Anal.
– volume: 40
  start-page: 2696
  year: 2020
  end-page: 2716
  ident: b14
  article-title: Finite element method for a stationary Stokes hemivariational inequality with slip boundary condition
  publication-title: IMA J. Numer. Anal.
– year: 2007
  ident: b26
  article-title: Nonsmooth Variational Problems and their Inequalities: Comparison Principles and Applications
– year: 1993
  ident: b23
  article-title: Hemivariational Inequalities, Applications in Mechanics and Engineering
– year: 1979
  ident: b42
  article-title: Navier–Stokes Equations: Theory and Numerical Analysis
– volume: 31
  start-page: 257
  year: 2016
  end-page: 276
  ident: b15
  article-title: A class of hemivariational inequalities for nonstationary Navier–Stokes equations
  publication-title: Nonlinear Anal. Real World Appl.
– volume: 78
  start-page: 2772
  year: 2019
  end-page: 2788
  ident: b21
  article-title: Two-grid MFEAs for the incompressible Stokes type variational inequality with damping
  publication-title: Comput. Math. Appl.
– year: 2018
  ident: b28
  article-title: Variational–Hemivariational Inequalities with Applications
– volume: 15
  start-page: 1141
  year: 2005
  end-page: 1168
  ident: b4
  article-title: Steady Stokes flows with threshold slip boundary conditions
  publication-title: Math. Models Methods Appl. Sci.
– volume: 12
  start-page: 483
  year: 2007
  end-page: 495
  ident: b6
  article-title: Non-Newtonian Stokes flow with frictional boundary conditions
  publication-title: Math. Model. Anal.
– volume: 28
  start-page: 843
  year: 2003
  end-page: 868
  ident: b19
  article-title: On some compressible fluid models: Korteweg, lubrication, and shallow water systems
  publication-title: Comm. Partial Differential Equations
– volume: 202
  start-page: 3621
  year: 2002
  end-page: 3637
  ident: b20
  article-title: Global existence and nonexistence for nonlinear wave equations with damping and source terms
  publication-title: Trans. Amer. Math. Soc.
– year: 1993
  ident: b1
  article-title: Flow Problems with Unilateral Boundary Conditions
– volume: 89
  start-page: 8
  year: 2021
  ident: b39
  article-title: Mixed finite element method for a hemivariational inequality of stationary Navier–Stokes equations
  publication-title: J. Sci. Comput.
– volume: 888
  start-page: 199
  year: 1994
  end-page: 216
  ident: b2
  article-title: A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions
  publication-title: RIMS Kôkyûroku
– volume: 17
  start-page: 303
  year: 2011
  end-page: 316
  ident: b45
  article-title: Uzawa iteration method for Stokes type variational inequality of the second kind
  publication-title: Acta Math. App. Sin.
– volume: 305
  start-page: 936
  year: 2016
  end-page: 958
  ident: b7
  article-title: Numerical methods for the Stokes and Navier–Stokes equations driven by threshold slip boundary conditions
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 1999
  ident: b29
  article-title: Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications
– start-page: 545
  year: 2013
  end-page: 554
  ident: b16
  article-title: A note on optimal control problem for a hemivariational inequality modeling fluid flow
  publication-title: Discrete Contin. Dyn. Syst. (Supplement)
– year: 2008
  ident: b44
  article-title: The Mathematical Theory of Finite Element Methods
– year: 1976
  ident: b36
  article-title: Convex Analysis and Variational Problems
– volume: 204
  start-page: 216
  year: 2008
  end-page: 226
  ident: b13
  article-title: Penalty finite element method for Stokes problem with nonlinear slip boundary conditions
  publication-title: Appl. Math. Comput.
– volume: 306
  start-page: 197
  year: 2005
  end-page: 217
  ident: b17
  article-title: Hemivariational inequalities for stationary Navier–Stokes equations
  publication-title: J. Math. Anal. Appl.
– volume: 238
  start-page: 211
  year: 2003
  end-page: 223
  ident: b18
  article-title: Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model
  publication-title: Comm. Math. Phys.
– year: 2009
  ident: b41
  article-title: Theoretical Numerical Analysis: A Functional Analysis Framework
– volume: 30
  start-page: 227
  year: 2013
  end-page: 261
  ident: b9
  article-title: On a finite element approximation of the Stokes equations under a slip boundary condition of the friction type
  publication-title: Jpn. J. Indust. Appl. Math.
– volume: 54
  year: 2020
  ident: b32
  article-title: Minimization principles for elliptic hemivariational inequalities
  publication-title: Nonlinear Anal. Real World Appl.
– volume: 121
  year: 2021
  ident: b34
  article-title: Minimization principle in study of a Stokes hemivariational inequality
  publication-title: Appl. Math. Lett.
– volume: 76
  start-page: 888
  year: 2018
  end-page: 912
  ident: b8
  article-title: Discontinuous Galerkin methods for a stationary Navier–Stokes problem with a nonlinear slip boundary condition of friction type
  publication-title: J. Sci. Comput.
– year: 1995
  ident: b24
  article-title: Mathematical Theory of Hemivariational Inequalities and Applications
– year: 2021
  ident: b25
  article-title: Multi-Valued Variational Inequalities and Inclusions
– year: 1981
  ident: b37
  article-title: Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction
– year: 1978
  ident: b38
  article-title: The Finite Element Method for Elliptic Problems
– volume: 51
  start-page: 2445
  year: 2013
  end-page: 2469
  ident: b10
  article-title: Finite element method for Stokes equations under leak boundary condition of friction type
  publication-title: SIAM J. Numer. Anal.
– volume: 21
  start-page: 337
  year: 1984
  end-page: 344
  ident: b43
  article-title: A stable finite element for the Stokes equations
  publication-title: Calcolo
– volume: 279
  start-page: 276
  year: 2003
  end-page: 289
  ident: b40
  article-title: Generalized monotonicity and convexity of non-differentiable functions
  publication-title: J. Math. Anal. Appl.
– volume: 42
  start-page: 160
  year: 1983
  end-page: 183
  ident: b22
  article-title: Nonconvex energy functions, hemivariational inequalities and substationary principles
  publication-title: Acta Mech.
– volume: 42
  start-page: 371
  year: 2021
  end-page: 395
  ident: b33
  article-title: A revisit of elliptic variational–hemivariational inequalities
  publication-title: Numer. Funct. Anal. Optim.
– volume: 30
  start-page: 595
  year: 2007
  end-page: 624
  ident: b5
  article-title: Steady solutions of the Navier–Stokes equations with threshold slip boundary conditions
  publication-title: Math. Methods Appl. Sci.
– volume: 117
  start-page: 1
  year: 2011
  end-page: 36
  ident: b11
  article-title: Semi-discrete stabilized finite element methods for Navier–Stokes equations with nonlinear slip boundary conditions based on regularization procedure
  publication-title: Numer. Math.
– volume: Vol. 26
  year: 2013
  ident: b27
  article-title: Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems
  publication-title: Advances in Mechanics and Mathematics
– volume: 11
  start-page: 15
  year: 1998
  end-page: 33
  ident: b3
  article-title: Variational inequalities for the Stokes equation with boundary conditions of friction type
  publication-title: GAKUTO Int. Ser. Math. Sci. Appl.
– volume: 28
  start-page: 175
  year: 2019
  end-page: 286
  ident: b31
  article-title: Numerical analysis of hemivariational inequalities in contact mechanics
  publication-title: Acta Numer.
– year: 1983
  ident: b35
  article-title: Optimization and Nonsmooth Analysis
– year: 1995
  ident: 10.1016/j.nonrwa.2024.104131_b24
– year: 2009
  ident: 10.1016/j.nonrwa.2024.104131_b41
– volume: 40
  start-page: 2696
  year: 2020
  ident: 10.1016/j.nonrwa.2024.104131_b14
  article-title: Finite element method for a stationary Stokes hemivariational inequality with slip boundary condition
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drz032
– volume: 46
  start-page: 3891
  year: 2014
  ident: 10.1016/j.nonrwa.2024.104131_b30
  article-title: A class of variational–hemivariational inequalities with applications to frictional contact problems
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/140963248
– volume: 15
  start-page: 1141
  year: 2005
  ident: 10.1016/j.nonrwa.2024.104131_b4
  article-title: Steady Stokes flows with threshold slip boundary conditions
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202505000686
– volume: 238
  start-page: 211
  year: 2003
  ident: 10.1016/j.nonrwa.2024.104131_b18
  article-title: Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model
  publication-title: Comm. Math. Phys.
  doi: 10.1007/s00220-003-0859-8
– volume: 888
  start-page: 199
  year: 1994
  ident: 10.1016/j.nonrwa.2024.104131_b2
  article-title: A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions
  publication-title: RIMS Kôkyûroku
– volume: 42
  start-page: 160
  year: 1983
  ident: 10.1016/j.nonrwa.2024.104131_b22
  article-title: Nonconvex energy functions, hemivariational inequalities and substationary principles
  publication-title: Acta Mech.
– year: 1993
  ident: 10.1016/j.nonrwa.2024.104131_b23
– year: 2007
  ident: 10.1016/j.nonrwa.2024.104131_b26
– volume: 305
  start-page: 936
  year: 2016
  ident: 10.1016/j.nonrwa.2024.104131_b7
  article-title: Numerical methods for the Stokes and Navier–Stokes equations driven by threshold slip boundary conditions
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2016.03.026
– volume: 121
  year: 2021
  ident: 10.1016/j.nonrwa.2024.104131_b34
  article-title: Minimization principle in study of a Stokes hemivariational inequality
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2021.107401
– volume: 54
  year: 2020
  ident: 10.1016/j.nonrwa.2024.104131_b32
  article-title: Minimization principles for elliptic hemivariational inequalities
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2020.103114
– year: 1979
  ident: 10.1016/j.nonrwa.2024.104131_b42
– volume: 42
  start-page: 371
  year: 2021
  ident: 10.1016/j.nonrwa.2024.104131_b33
  article-title: A revisit of elliptic variational–hemivariational inequalities
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2021.1881541
– volume: 76
  start-page: 888
  year: 2018
  ident: 10.1016/j.nonrwa.2024.104131_b8
  article-title: Discontinuous Galerkin methods for a stationary Navier–Stokes problem with a nonlinear slip boundary condition of friction type
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-0644-7
– year: 2021
  ident: 10.1016/j.nonrwa.2024.104131_b25
– year: 1981
  ident: 10.1016/j.nonrwa.2024.104131_b37
– volume: 69
  start-page: 550
  year: 2012
  ident: 10.1016/j.nonrwa.2024.104131_b12
  article-title: Penalty finite element method for Navier–Stokes equations with nonlinear slip boundary conditions
  publication-title: Internat. J. Numer. Methods Fluids
  doi: 10.1002/fld.2574
– volume: 17
  start-page: 303
  year: 2011
  ident: 10.1016/j.nonrwa.2024.104131_b45
  article-title: Uzawa iteration method for Stokes type variational inequality of the second kind
  publication-title: Acta Math. App. Sin.
  doi: 10.1007/s10255-011-0063-0
– volume: 306
  start-page: 197
  year: 2005
  ident: 10.1016/j.nonrwa.2024.104131_b17
  article-title: Hemivariational inequalities for stationary Navier–Stokes equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2004.12.033
– volume: 21
  start-page: 337
  year: 1984
  ident: 10.1016/j.nonrwa.2024.104131_b43
  article-title: A stable finite element for the Stokes equations
  publication-title: Calcolo
  doi: 10.1007/BF02576171
– volume: 11
  start-page: 15
  year: 1998
  ident: 10.1016/j.nonrwa.2024.104131_b3
  article-title: Variational inequalities for the Stokes equation with boundary conditions of friction type
  publication-title: GAKUTO Int. Ser. Math. Sci. Appl.
– volume: 117
  start-page: 1
  year: 2011
  ident: 10.1016/j.nonrwa.2024.104131_b11
  article-title: Semi-discrete stabilized finite element methods for Navier–Stokes equations with nonlinear slip boundary conditions based on regularization procedure
  publication-title: Numer. Math.
  doi: 10.1007/s00211-010-0354-z
– year: 2018
  ident: 10.1016/j.nonrwa.2024.104131_b28
– volume: Vol. 26
  year: 2013
  ident: 10.1016/j.nonrwa.2024.104131_b27
  article-title: Nonlinear inclusions and hemivariational inequalities. Models and analysis of contact problems
  doi: 10.1007/978-1-4614-4232-5
– start-page: 545
  year: 2013
  ident: 10.1016/j.nonrwa.2024.104131_b16
  article-title: A note on optimal control problem for a hemivariational inequality modeling fluid flow
  publication-title: Discrete Contin. Dyn. Syst. (Supplement)
– volume: 202
  start-page: 3621
  year: 2002
  ident: 10.1016/j.nonrwa.2024.104131_b20
  article-title: Global existence and nonexistence for nonlinear wave equations with damping and source terms
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-02-03034-9
– volume: 31
  start-page: 257
  year: 2016
  ident: 10.1016/j.nonrwa.2024.104131_b15
  article-title: A class of hemivariational inequalities for nonstationary Navier–Stokes equations
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2016.02.005
– volume: 30
  start-page: 595
  year: 2007
  ident: 10.1016/j.nonrwa.2024.104131_b5
  article-title: Steady solutions of the Navier–Stokes equations with threshold slip boundary conditions
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.802
– volume: 204
  start-page: 216
  year: 2008
  ident: 10.1016/j.nonrwa.2024.104131_b13
  article-title: Penalty finite element method for Stokes problem with nonlinear slip boundary conditions
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2008.06.035
– year: 1976
  ident: 10.1016/j.nonrwa.2024.104131_b36
– volume: 28
  start-page: 175
  year: 2019
  ident: 10.1016/j.nonrwa.2024.104131_b31
  article-title: Numerical analysis of hemivariational inequalities in contact mechanics
  publication-title: Acta Numer.
  doi: 10.1017/S0962492919000023
– year: 1978
  ident: 10.1016/j.nonrwa.2024.104131_b38
– volume: 78
  start-page: 2772
  year: 2019
  ident: 10.1016/j.nonrwa.2024.104131_b21
  article-title: Two-grid MFEAs for the incompressible Stokes type variational inequality with damping
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2019.04.024
– year: 1999
  ident: 10.1016/j.nonrwa.2024.104131_b29
– volume: 89
  start-page: 8
  year: 2021
  ident: 10.1016/j.nonrwa.2024.104131_b39
  article-title: Mixed finite element method for a hemivariational inequality of stationary Navier–Stokes equations
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-021-01614-9
– year: 1993
  ident: 10.1016/j.nonrwa.2024.104131_b1
– volume: 12
  start-page: 483
  year: 2007
  ident: 10.1016/j.nonrwa.2024.104131_b6
  article-title: Non-Newtonian Stokes flow with frictional boundary conditions
  publication-title: Math. Model. Anal.
  doi: 10.3846/1392-6292.2007.12.483-495
– year: 1983
  ident: 10.1016/j.nonrwa.2024.104131_b35
– year: 2008
  ident: 10.1016/j.nonrwa.2024.104131_b44
– volume: 279
  start-page: 276
  year: 2003
  ident: 10.1016/j.nonrwa.2024.104131_b40
  article-title: Generalized monotonicity and convexity of non-differentiable functions
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(03)00009-X
– volume: 30
  start-page: 227
  year: 2013
  ident: 10.1016/j.nonrwa.2024.104131_b9
  article-title: On a finite element approximation of the Stokes equations under a slip boundary condition of the friction type
  publication-title: Jpn. J. Indust. Appl. Math.
  doi: 10.1007/s13160-012-0098-5
– volume: 51
  start-page: 2445
  year: 2013
  ident: 10.1016/j.nonrwa.2024.104131_b10
  article-title: Finite element method for Stokes equations under leak boundary condition of friction type
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/120896396
– volume: 28
  start-page: 843
  year: 2003
  ident: 10.1016/j.nonrwa.2024.104131_b19
  article-title: On some compressible fluid models: Korteweg, lubrication, and shallow water systems
  publication-title: Comm. Partial Differential Equations
  doi: 10.1081/PDE-120020499
SSID ssj0017131
Score 2.3989017
Snippet In this paper, a Stokes hemivariational inequality is studied for incompressible fluid flows with the damping effect. The hemivariational inequality feature is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104131
SubjectTerms Error estimation
Hemivariational inequality
Minimization principle
Mixed finite element method
Stokes equations with damping
Well-posedness
Title On a Stokes hemivariational inequality for incompressible fluid flows with damping
URI https://dx.doi.org/10.1016/j.nonrwa.2024.104131
Volume 79
WOSCitedRecordID wos001235584900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-5719
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017131
  issn: 1468-1218
  databaseCode: AIEXJ
  dateStart: 20000301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwM8oPElxsfkB96qoMROGvtxQkMwjQ7BgL4FJ7albF1a9Wv787mL7bRjiC-JF6ty6zq6--V8Pt_9TMhLrrRkpUHyQaGiNIl5pIS0EUduOS5SLdtgzpfjfDQS47H80Ot9C7Uw60neNOLqSs7-q6qhD5SNpbN_oe7uT6EDPoPSoQW1Q_tHij9pBgo5ts_NYoBsAGvYDYeIH7iUrorSpWkiM8OFy4TFAio7WdUa2umlr3nT6mIWljbvwI4ctYbC1EtHZ4IxhTnSE7fkq4PtE_GNeWtt21eDV4h1odZ61a57qp5M_RwtEbAr167hOZvtkARLu-Q2HycLtTKbxCQ0rVjjlTBvbY3rE7CHzXJvNL09dpfL3DDtLspw9qqZNvNLZIxiKR5QJ34RuU6a_Qlnw8kwRRY34rfIDgP0iT7ZOXh3OD7qTprguyRUoOGAUF7Z5gDenOvn7suWS3K6S-75vQQ9cBi4T3qmeUDuvu-IeBcPyceThirq0EB_QAPdoIECGuh1NNAWDbRFA0U0UI-GR-Tzm8PT128jf41GVMF-cBnBK2es5UMbc1HaMs0Y17m2lcqzpIxNnlVS2zRlCsMkktnM6szGQ5MmNtFGxvwx6YMgzBNCMwEvc8WqMstLsPxc8KGOK2utEspYyfYID9IpKs8xj1edTIqQTHhWOJkWKNPCyXSPRN2omeNY-c3v8yD4wvuJzv8rACu_HPn0n0c-I3c2SH9O-sv5yrwgt6v1sl7M9z2ovgOS85GJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+Stokes+hemivariational+inequality+for+incompressible+fluid+flows+with+damping&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Han%2C+Weimin&rft.au=Qiu%2C+Hailong&rft.au=Mei%2C+Liquan&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=1468-1218&rft.eissn=1878-5719&rft.volume=79&rft_id=info:doi/10.1016%2Fj.nonrwa.2024.104131&rft.externalDocID=S1468121824000713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon