On a Stokes hemivariational inequality for incompressible fluid flows with damping

In this paper, a Stokes hemivariational inequality is studied for incompressible fluid flows with the damping effect. The hemivariational inequality feature is caused by the presence of a nonsmooth slip boundary condition of friction type. Well-posedness of the Stokes hemivariational inequality is e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonlinear analysis: real world applications Ročník 79; s. 104131
Hlavní autoři: Han, Weimin, Qiu, Hailong, Mei, Liquan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2024
Témata:
ISSN:1468-1218, 1878-5719
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a Stokes hemivariational inequality is studied for incompressible fluid flows with the damping effect. The hemivariational inequality feature is caused by the presence of a nonsmooth slip boundary condition of friction type. Well-posedness of the Stokes hemivariational inequality is established through the consideration of a minimization problem. Mixed finite element methods are introduced to solve the Stokes hemivariational inequality and error estimates are derived for the mixed finite element solutions. The error estimates are of optimal order for low-order mixed element pairs under suitable solution regularity assumptions. An efficient iterative algorithm is introduced to solve the mixed finite element system. Numerical results are reported on the performance of the proposed algorithm and the numerical convergence orders of the finite element solutions.
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2024.104131