A novel neural network for solving convex quadratic programming problems subject to equality and inequality constraints

This paper proposes a neural network model for solving convex quadratic programming (CQP) problems, whose equilibrium points coincide with Karush–Kuhn–Tucker (KKT) points of the CQP problem. Using the equality transformation and Fischer–Burmeister (FB) function, we construct the neural network model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) Jg. 214; S. 23 - 31
Hauptverfasser: Huang, Xinjian, Lou, Xuyang, Cui, Baotong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 19.11.2016
Schlagworte:
ISSN:0925-2312, 1872-8286
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a neural network model for solving convex quadratic programming (CQP) problems, whose equilibrium points coincide with Karush–Kuhn–Tucker (KKT) points of the CQP problem. Using the equality transformation and Fischer–Burmeister (FB) function, we construct the neural network model and present the KKT condition for the CQP problem. In contrast to two existing neural networks for solving such problems, the proposed neural network has fewer variables and neurons, which makes circuit realization easier. Moreover, the proposed neural network is asymptotically stable in the sense of Lyapunov such that it converges to an exact optimal solution of the CQP problem. Simulation results are provided to show the feasibility and efficiency of the proposed network.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2016.05.032