On the Realization of the Wolfe Conditions in Reduced Quasi-Newton Methods for Equality Constrained Optimization
This paper describes a reduced quasi-Newton method for solving equality constrained optimization problems. A major difficulty encountered by this type of algorithm is the design of a consistent technique for maintaining the positive definiteness of the matrices approximating the reduced Hessian of t...
Saved in:
| Published in: | SIAM journal on optimization Vol. 7; no. 3; pp. 780 - 813 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Philadelphia
Society for Industrial and Applied Mathematics
01.08.1997
|
| Subjects: | |
| ISSN: | 1052-6234, 1095-7189 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper describes a reduced quasi-Newton method for solving equality constrained optimization problems. A major difficulty encountered by this type of algorithm is the design of a consistent technique for maintaining the positive definiteness of the matrices approximating the reduced Hessian of the Lagrangian. A new approach is proposed in this paper. The idea is to search for the next iterate along a piecewise linear path. The path is designed so that some generalized Wolfe conditions can be satisfied. These conditions allow the algorithm to sustain the positive definiteness of the matrices from iteration to iteration by a mechanism that has turned out to be efficient in unconstrained optimization. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 1052-6234 1095-7189 |
| DOI: | 10.1137/S1052623493259604 |