Memory level neural network: A time-varying neural network for memory input processing

Affective computing is an important foundation for implementing brain-like computing and advanced machine intelligence. However, the instantaneous and memory fusion input characteristic makes current neural networks not suitable for affective computing. In this paper, we propose an affective computi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 425; s. 256 - 265
Hlavní autoři: Gong, Chao, Zhou, Xianwei, Lü, Xing, Lin, Fuhong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.02.2021
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Affective computing is an important foundation for implementing brain-like computing and advanced machine intelligence. However, the instantaneous and memory fusion input characteristic makes current neural networks not suitable for affective computing. In this paper, we propose an affective computing oriented memory level neural network. A “switch” has been added to the memory level neurons, which will achieve a transition from the instantaneous input to the memory input when the temporal integration of inputs above a certain threshold. Then, the “switch” is continualized by an adjustable sigmoid function whose parameters are tuned to adjust the speed of the transition and the mixing ratio of the two inputs. Multiple memory level neurons form a deep time-varying neural network capable of handling fusional inputs. We demonstrate on both process datasets and static datasets that the memory level neural network successfully converges on both datasets and meets the error accuracy requirements.
AbstractList Affective computing is an important foundation for implementing brain-like computing and advanced machine intelligence. However, the instantaneous and memory fusion input characteristic makes current neural networks not suitable for affective computing. In this paper, we propose an affective computing oriented memory level neural network. A “switch” has been added to the memory level neurons, which will achieve a transition from the instantaneous input to the memory input when the temporal integration of inputs above a certain threshold. Then, the “switch” is continualized by an adjustable sigmoid function whose parameters are tuned to adjust the speed of the transition and the mixing ratio of the two inputs. Multiple memory level neurons form a deep time-varying neural network capable of handling fusional inputs. We demonstrate on both process datasets and static datasets that the memory level neural network successfully converges on both datasets and meets the error accuracy requirements.
Author Lin, Fuhong
Lü, Xing
Gong, Chao
Zhou, Xianwei
Author_xml – sequence: 1
  givenname: Chao
  surname: Gong
  fullname: Gong, Chao
  organization: School of Computer and Communication Engineering, University of Science and Technology, Beijing Beijing 100083, China
– sequence: 2
  givenname: Xianwei
  surname: Zhou
  fullname: Zhou, Xianwei
  organization: School of Computer and Communication Engineering, University of Science and Technology, Beijing Beijing 100083, China
– sequence: 3
  givenname: Xing
  surname:
  fullname: Lü, Xing
  organization: School of Computer and Communication Engineering, University of Science and Technology, Beijing Beijing 100083, China
– sequence: 4
  givenname: Fuhong
  surname: Lin
  fullname: Lin, Fuhong
  email: FHLin@ustb.edu.cn
  organization: School of Computer and Communication Engineering, University of Science and Technology, Beijing Beijing 100083, China
BookMark eNqFkMtOwzAQRS1UJNrCH7DwDyR4nJfTBVJV8ZJAbICt5doT5JLEle0W9e9JFVZdwOouZs6V7pmRSe96JOQaWAoMyptN2uNOuy7ljLOU5SmrszMyBVHxRHBRTsiU1bxIeAb8gsxC2DAGFfB6Sj5esHP-QFvcY0uHGq-OEb-d_1rQJY22w2Sv_MH2nydn2jhPuxG3_XYX6dY7jSEMr5fkvFFtwKvfnJP3-7u31WPy_PrwtFo-JzpjZUwKU5UqY7UBYTSggdLAumyEKhosiiyrq7xELpo1B20arjiiyGtUAJgLhXk2J4uxV3sXgsdGahtVtK6PXtlWApNHQ3IjR0PyaEiyXA6GBjg_gbfedsPW_7DbEcNh2N6il0Fb7DUa61FHaZz9u-AHkp-G5w
CitedBy_id crossref_primary_10_1002_oca_2840
crossref_primary_10_1109_ACCESS_2024_3450551
crossref_primary_10_1007_s00521_022_07760_x
Cites_doi 10.3389/fnins.2019.00095
10.1016/j.neucom.2018.05.081
10.1155/2018/7068349
10.1109/TCYB.2017.2711961
10.1109/MCI.2018.2840738
10.23919/JCC.2019.08.011
10.1109/TSMC.2016.2606159
10.1109/JSSC.2016.2616357
10.1109/ACCESS.2018.2807385
10.1016/S0925-2312(01)00702-0
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.04.093
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 265
ExternalDocumentID 10_1016_j_neucom_2020_04_093
S0925231220306780
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-5d76a309d18dc1ed16d1b6f8a5fe55339746e28fb21cdf2a2ee849ea11e48ae43
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000632014300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:11:55 EST 2025
Tue Nov 18 20:38:44 EST 2025
Fri Feb 23 02:48:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Affective computing
Memory level transition
MLNN
Memory level neuron
Time-varying output
Time-related memory input
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-5d76a309d18dc1ed16d1b6f8a5fe55339746e28fb21cdf2a2ee849ea11e48ae43
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2020_04_093
crossref_primary_10_1016_j_neucom_2020_04_093
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_04_093
PublicationCentury 2000
PublicationDate 2021-02-15
PublicationDateYYYYMMDD 2021-02-15
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, Mobilenets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704.04861.
Hecht-Nielsen (b0125) 1989
Jin, Song, Hu (b0065) 2019
Sak, Senior, Beaufays (b0110) 2014
Voulodimos, Doulamis, Doulamis, Protopapadakis (b0020) 2018
Young, Hazarika, Poria, Cambria (b0035) 2018; 13
Lee, Kim, Kang, Shin, Kim, Yoo (b0080) 2018
He, Xu (b0100) 2010
J. Villanueva-Valle, Facial expression of emotion, 2018. URL
He, Huang, Ge (b0115) 2017; 47
H. Yao, F. Dai, S. Zhang, Y. Zhang, Q. Tian, C. Xu, Dr2-net: Deep residual reconstruction network for image compressive sensing, Neurocomputing.
T. Bouwmans, S. Javed, M. Sultana, S.K. Jung, Deep neural network concepts for background subtraction: a systematic review and comparative evaluation, Neural Networks.
Jiang, Kim, Wen, Wang (b0090) 2017; 2017
Wu, Dai, Zhang, Wang, Sun, Wu, Tian, Vajda, Jia, Keutzer (b0075) 2019
Mikolov, Karafiát, Burget, Černocký, Khudanpur (b0105) 2010
Zhang (b0095) 2003; 50
Shen, Zhou, Long, Jiang, Pan, Zhang (b0045) 2018
Hecht-Nielsen (b0010) 1992
Chen, Krishna, Emer, Sze (b0085) 2017; 52
A. Sengupta, Y. Ye, R. Wang, C. Liu, K. Roy, Going deeper in spiking neural networks: Vgg and residual architectures, Front. Neurosci. 13.
D. Dheeru, E. Karra Taniskidou, UCI machine learning repository, 2017. URL
Liu, Lu, Tong (b0120) 2017; 47
.
Krizhevsky, Sutskever, Hinton (b0030) 2012
Akhtar, Mian (b0015) 2018; 6
M. Hebert, J.-P. Robichaud, C.M. Parisien, N. Duta, J. Tremblay, A. Almahairi, L. Kaushik, M. Boisvert, Multi-domain natural language processing architecture, uS Patent App. 10/282,419, May 7 2019.
Gong, Lin, Zhou, Lü (b0005) 2019; 16
Morchid (b0050) 2018; 314
Jiang (10.1016/j.neucom.2020.04.093_b0090) 2017; 2017
10.1016/j.neucom.2020.04.093_b0070
Zhang (10.1016/j.neucom.2020.04.093_b0095) 2003; 50
He (10.1016/j.neucom.2020.04.093_b0115) 2017; 47
10.1016/j.neucom.2020.04.093_b0135
Hecht-Nielsen (10.1016/j.neucom.2020.04.093_b0010) 1992
10.1016/j.neucom.2020.04.093_b0055
Wu (10.1016/j.neucom.2020.04.093_b0075) 2019
Krizhevsky (10.1016/j.neucom.2020.04.093_b0030) 2012
10.1016/j.neucom.2020.04.093_b0130
Shen (10.1016/j.neucom.2020.04.093_b0045) 2018
Sak (10.1016/j.neucom.2020.04.093_b0110) 2014
Chen (10.1016/j.neucom.2020.04.093_b0085) 2017; 52
Mikolov (10.1016/j.neucom.2020.04.093_b0105) 2010
10.1016/j.neucom.2020.04.093_b0040
10.1016/j.neucom.2020.04.093_b0060
Lee (10.1016/j.neucom.2020.04.093_b0080) 2018
Jin (10.1016/j.neucom.2020.04.093_b0065) 2019
10.1016/j.neucom.2020.04.093_b0025
Young (10.1016/j.neucom.2020.04.093_b0035) 2018; 13
Akhtar (10.1016/j.neucom.2020.04.093_b0015) 2018; 6
Morchid (10.1016/j.neucom.2020.04.093_b0050) 2018; 314
He (10.1016/j.neucom.2020.04.093_b0100) 2010
Gong (10.1016/j.neucom.2020.04.093_b0005) 2019; 16
Hecht-Nielsen (10.1016/j.neucom.2020.04.093_b0125) 1989
Voulodimos (10.1016/j.neucom.2020.04.093_b0020) 2018
Liu (10.1016/j.neucom.2020.04.093_b0120) 2017; 47
References_xml – volume: 16
  start-page: 115
  year: 2019
  end-page: 129
  ident: b0005
  article-title: Amygdala-inspired affective computing: to realize personalized intracranial emotions with accurately observed external emotions
  publication-title: China Commun.
– reference: J. Villanueva-Valle, Facial expression of emotion, 2018. URL:
– start-page: 1946
  year: 2019
  end-page: 1956
  ident: b0065
  article-title: Auto-keras: an efficient neural architecture search system
  publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– year: 2018
  ident: b0020
  article-title: Deep learning for computer vision: a brief review
  publication-title: Comput. Intell. Neurosci.
– start-page: 10734
  year: 2019
  end-page: 10742
  ident: b0075
  article-title: Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 1989
  ident: b0125
  article-title: Theory of the backpropagation neural network
– volume: 47
  start-page: 3136
  year: 2017
  end-page: 3147
  ident: b0115
  article-title: Adaptive neural network control of a robotic manipulator with time-varying output constraints
  publication-title: IEEE Trans. Cybern.
– volume: 314
  start-page: 48
  year: 2018
  end-page: 64
  ident: b0050
  article-title: Parsimonious memory unit for recurrent neural networks with application to natural language processing
  publication-title: Neurocomputing
– reference: T. Bouwmans, S. Javed, M. Sultana, S.K. Jung, Deep neural network concepts for background subtraction: a systematic review and comparative evaluation, Neural Networks.
– volume: 52
  start-page: 127
  year: 2017
  end-page: 138
  ident: b0085
  article-title: Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks
  publication-title: IEEE J. Solid-State Circuits
– reference: A. Sengupta, Y. Ye, R. Wang, C. Liu, K. Roy, Going deeper in spiking neural networks: Vgg and residual architectures, Front. Neurosci. 13.
– reference: D. Dheeru, E. Karra Taniskidou, UCI machine learning repository, 2017. URL:
– year: 2010
  ident: b0105
  article-title: Recurrent neural network based language model
  publication-title: Eleventh Annual Conference of the International Speech Communication Association
– start-page: 65
  year: 1992
  end-page: 93
  ident: b0010
  article-title: Theory of the backpropagation neural network
  publication-title: Neural networks for perception
– year: 2014
  ident: b0110
  article-title: Long short-term memory recurrent neural network architectures for large scale acoustic modeling
  publication-title: Fifteenth Annual Conference of the International Speech Communication Association
– volume: 6
  start-page: 14410
  year: 2018
  end-page: 14430
  ident: b0015
  article-title: Threat of adversarial attacks on deep learning in computer vision: a survey
  publication-title: IEEE Access
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b0030
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: International Conference on Neural Information Processing Systems
– volume: 13
  start-page: 55
  year: 2018
  end-page: 75
  ident: b0035
  article-title: Recent trends in deep learning based natural language processing
  publication-title: IEEE Computat. Intell. Mag.
– year: 2018
  ident: b0045
  article-title: Disan: directional self-attention network for rnn/cnn-free language understanding
  publication-title: Thirty-Second AAAI Conference on Artificial Intelligence
– volume: 47
  start-page: 2060
  year: 2017
  end-page: 2068
  ident: b0120
  article-title: Neural network controller design for an uncertain robot with time-varying output constraint
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– reference: .
– year: 2010
  ident: b0100
  article-title: Process Neural Networks: Theory and Applications
– reference: H. Yao, F. Dai, S. Zhang, Y. Zhang, Q. Tian, C. Xu, Dr2-net: Deep residual reconstruction network for image compressive sensing, Neurocomputing.
– start-page: 218
  year: 2018
  end-page: 220
  ident: b0080
  article-title: Unpu: a 50.6 tops/w unified deep neural network accelerator with 1b-to-16b fully-variable weight bit-precision
  publication-title: 2018 IEEE International Solid-State Circuits Conference-(ISSCC)
– reference: A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, Mobilenets: Efficient convolutional neural networks for mobile vision applications, arXiv preprint arXiv:1704.04861.
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 6
  ident: b0090
  article-title: Xnor-pop: a processing-in-memory architecture for binary convolutional neural networks in wide-io2 drams, in
  publication-title: IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)
– volume: 50
  start-page: 159
  year: 2003
  end-page: 175
  ident: b0095
  article-title: Time series forecasting using a hybrid arima and neural network model
  publication-title: Neurocomputing
– reference: M. Hebert, J.-P. Robichaud, C.M. Parisien, N. Duta, J. Tremblay, A. Almahairi, L. Kaushik, M. Boisvert, Multi-domain natural language processing architecture, uS Patent App. 10/282,419, May 7 2019.
– start-page: 10734
  year: 2019
  ident: 10.1016/j.neucom.2020.04.093_b0075
  article-title: Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search
– ident: 10.1016/j.neucom.2020.04.093_b0055
– ident: 10.1016/j.neucom.2020.04.093_b0060
  doi: 10.3389/fnins.2019.00095
– volume: 314
  start-page: 48
  year: 2018
  ident: 10.1016/j.neucom.2020.04.093_b0050
  article-title: Parsimonious memory unit for recurrent neural networks with application to natural language processing
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.081
– year: 1989
  ident: 10.1016/j.neucom.2020.04.093_b0125
– year: 2018
  ident: 10.1016/j.neucom.2020.04.093_b0020
  article-title: Deep learning for computer vision: a brief review
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2018/7068349
– volume: 47
  start-page: 3136
  issue: 10
  year: 2017
  ident: 10.1016/j.neucom.2020.04.093_b0115
  article-title: Adaptive neural network control of a robotic manipulator with time-varying output constraints
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2711961
– year: 2010
  ident: 10.1016/j.neucom.2020.04.093_b0100
– start-page: 65
  year: 1992
  ident: 10.1016/j.neucom.2020.04.093_b0010
  article-title: Theory of the backpropagation neural network
– year: 2010
  ident: 10.1016/j.neucom.2020.04.093_b0105
  article-title: Recurrent neural network based language model
– year: 2014
  ident: 10.1016/j.neucom.2020.04.093_b0110
  article-title: Long short-term memory recurrent neural network architectures for large scale acoustic modeling
– ident: 10.1016/j.neucom.2020.04.093_b0040
– ident: 10.1016/j.neucom.2020.04.093_b0025
– volume: 13
  start-page: 55
  issue: 3
  year: 2018
  ident: 10.1016/j.neucom.2020.04.093_b0035
  article-title: Recent trends in deep learning based natural language processing
  publication-title: IEEE Computat. Intell. Mag.
  doi: 10.1109/MCI.2018.2840738
– ident: 10.1016/j.neucom.2020.04.093_b0130
– start-page: 1097
  year: 2012
  ident: 10.1016/j.neucom.2020.04.093_b0030
  article-title: Imagenet classification with deep convolutional neural networks
– volume: 16
  start-page: 115
  issue: 8
  year: 2019
  ident: 10.1016/j.neucom.2020.04.093_b0005
  article-title: Amygdala-inspired affective computing: to realize personalized intracranial emotions with accurately observed external emotions
  publication-title: China Commun.
  doi: 10.23919/JCC.2019.08.011
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.neucom.2020.04.093_b0090
  article-title: Xnor-pop: a processing-in-memory architecture for binary convolutional neural networks in wide-io2 drams, in
  publication-title: IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED)
– volume: 47
  start-page: 2060
  issue: 8
  year: 2017
  ident: 10.1016/j.neucom.2020.04.093_b0120
  article-title: Neural network controller design for an uncertain robot with time-varying output constraint
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
  doi: 10.1109/TSMC.2016.2606159
– volume: 52
  start-page: 127
  issue: 1
  year: 2017
  ident: 10.1016/j.neucom.2020.04.093_b0085
  article-title: Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2016.2616357
– start-page: 218
  year: 2018
  ident: 10.1016/j.neucom.2020.04.093_b0080
  article-title: Unpu: a 50.6 tops/w unified deep neural network accelerator with 1b-to-16b fully-variable weight bit-precision
– start-page: 1946
  year: 2019
  ident: 10.1016/j.neucom.2020.04.093_b0065
  article-title: Auto-keras: an efficient neural architecture search system
– year: 2018
  ident: 10.1016/j.neucom.2020.04.093_b0045
  article-title: Disan: directional self-attention network for rnn/cnn-free language understanding
– volume: 6
  start-page: 14410
  year: 2018
  ident: 10.1016/j.neucom.2020.04.093_b0015
  article-title: Threat of adversarial attacks on deep learning in computer vision: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2807385
– ident: 10.1016/j.neucom.2020.04.093_b0070
– ident: 10.1016/j.neucom.2020.04.093_b0135
– volume: 50
  start-page: 159
  year: 2003
  ident: 10.1016/j.neucom.2020.04.093_b0095
  article-title: Time series forecasting using a hybrid arima and neural network model
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00702-0
SSID ssj0017129
Score 2.325972
Snippet Affective computing is an important foundation for implementing brain-like computing and advanced machine intelligence. However, the instantaneous and memory...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 256
SubjectTerms Affective computing
Memory level neuron
Memory level transition
MLNN
Time-related memory input
Time-varying output
Title Memory level neural network: A time-varying neural network for memory input processing
URI https://dx.doi.org/10.1016/j.neucom.2020.04.093
Volume 425
WOSCitedRecordID wos000632014300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3miXl3zgtgqqHSd2uJVql4fECokF9RY5sa1t1U2r0pT9D_xpxhknDRTxkrgk0cROrJkv9ngyD0KeyYJrVgoRxYkWkVCiiDJXukjHxiVSOhe7oik2Ic_O1HSavR8MvraxMNuFrCp1dZWt_quogQbC9qGzfyHu7qFAgGsQOhxB7HD8I8G_876zvhzE1i6OfbpK7U-NszeGofty8tFWr5sAp-8bNE6Hl_iAWbWqN8crDCRoF7h5m-ypBnpTECKYGsaXPuOC8fDqTAuvgrvv5EIvdwbqZe1pU4DlFzvr_IH8D_uXE7wT3uXJmOHgtL5YBmIwUHDmfZoxRBOtZnuRM2h-5EkEuiXOxBYnXyV5E9ben50FT_rza5L2lmqOZSb2VgE0SMyfAwu9SxAMaoT5bOPdqtf5In7wQ_Ej4c32SY2ukQMuk0wNycH4zcn0bfdTSjKOqRvD0NtIzMZdcP9dP9d0etrL-W1yM2w76BjhcocMbHWX3GpLetAww98jnxA9tEEPRXDQAI4XdEz72PnhNgXsUMQObbBDd9i5Tz6enpxPXkeh9EZUAhM2UWJkquNRZpgyJbOGpYYVqVM6cTaBHQLsQlPLlSs4K43jmlurRGY1Y1YobUX8gAyrZWUPCYVmTI4KA5p4KUputOE-WLuQaepKxeIjErdsysuQl96XR1nkrQPiPEfm5p65-UjkwNwjEnW9VpiX5TftZSuBPOiWqDPmAJpf9nz4zz0fkRu77-ExGW7WtX1Crpfbzezz-mlA1zevv6FB
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Memory+level+neural+network%3A+A+time-varying+neural+network+for+memory+input+processing&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Gong%2C+Chao&rft.au=Zhou%2C+Xianwei&rft.au=L%C3%BC%2C+Xing&rft.au=Lin%2C+Fuhong&rft.date=2021-02-15&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=425&rft.spage=256&rft.epage=265&rft_id=info:doi/10.1016%2Fj.neucom.2020.04.093&rft.externalDocID=S0925231220306780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon