The convergence analysis and specification of the Population-Based Incremental Learning algorithm

In this paper, we investigate the global convergence properties in probability of the Population-Based Incremental Learning (PBIL) algorithm when the initial configuration p ( 0 ) is fixed and the learning rate α is close to zero. The convergence in probability of PBIL is confirmed by the experiment...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 74; číslo 11; s. 1868 - 1873
Hlavní autori: Li, Helong, Kwong, Sam, Hong, Yi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.05.2011
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we investigate the global convergence properties in probability of the Population-Based Incremental Learning (PBIL) algorithm when the initial configuration p ( 0 ) is fixed and the learning rate α is close to zero. The convergence in probability of PBIL is confirmed by the experimental results. This paper presents a meaningful discussion on how to establish a unified convergence theory of PBIL that is not affected by the population and the selected individuals.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2010.06.032