Mixed integer programming with a class of nonlinear convex constraints
We study solution approaches to a class of mixed-integer nonlinear programming problems that arise from recent developments in risk-averse stochastic optimization and contain second- and p-order cone programming as special cases. We explore possible applications of some of the solution techniques th...
Gespeichert in:
| Veröffentlicht in: | Discrete optimization Jg. 24; S. 66 - 86 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.05.2017
|
| Schlagworte: | |
| ISSN: | 1572-5286, 1873-636X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We study solution approaches to a class of mixed-integer nonlinear programming problems that arise from recent developments in risk-averse stochastic optimization and contain second- and p-order cone programming as special cases. We explore possible applications of some of the solution techniques that have been successfully used in mixed-integer conic programming and show how they can be generalized to the problems under consideration. Particularly, we consider a branch-and-bound method based on outer polyhedral approximations, lifted nonlinear cuts, and linear disjunctive cuts. Results of numerical experiments with discrete portfolio optimization models are presented. |
|---|---|
| ISSN: | 1572-5286 1873-636X |
| DOI: | 10.1016/j.disopt.2016.07.002 |