Investigation of mechanical properties of high-performance concrete via multi-method of regression tree approach
Concrete's workability and durability are influenced by its mechanical properties, including Tensile and Compressive strength. High-performance concrete exhibits non-linear relationships between its compressive and tensile strength characteristics and the proportions of its constituent material...
Uložené v:
| Vydané v: | Materials today communications Ročník 40; s. 109922 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.08.2024
|
| Predmet: | |
| ISSN: | 2352-4928, 2352-4928 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Concrete's workability and durability are influenced by its mechanical properties, including Tensile and Compressive strength. High-performance concrete exhibits non-linear relationships between its compressive and tensile strength characteristics and the proportions of its constituent materials, such as water, aggregate, cement, and admixtures. The investigation of the relations between the constituents of concrete and its mechanical properties has posed a challenging issue. This paper seeks to develop a range of single, hybrid, and ensemble models to resolve the problem of accurately estimating the mechanical properties of concrete according to its constituent components as input variables. In this regard, various frameworks incorporating a machine learning technique called decision tree and four metaheuristic optimization algorithms were utilized in model development to emulate the values of tensile and compressive strength. The findings indicated that the decision tree-dynamic arithmetic optimization algorithm hybrid model produced results with an correlation of determination of 0.9919 in compressive strength and 0.9933 in tensile strength, which were on average 1–3 % higher than that of the decision tree-dandelion optimizer algorithm, decision tree-arithmetic optimization algorithm, and decision tree-coot optimization algorithm, indicating superior optimization performance of dynamic arithmetic optimization algorithm. Additionally, the powerful prediction capability of the decision tree + dynamic arithmetic optimization algorithm + dandelion optimizer algorithm + coot optimization algorithm + arithmetic optimization algorithm ensemble model was noticeable with R2 of 0.9882 and 0.9936 in compressive and tensile strength estimation reliable to be used for various data produced in the future. In general, the utilization of coupling techniques to generate hybrid and ensemble models can enhance the accuracy of predictions while reducing the time and costs associated with experimental procedures.
[Display omitted] |
|---|---|
| AbstractList | Concrete's workability and durability are influenced by its mechanical properties, including Tensile and Compressive strength. High-performance concrete exhibits non-linear relationships between its compressive and tensile strength characteristics and the proportions of its constituent materials, such as water, aggregate, cement, and admixtures. The investigation of the relations between the constituents of concrete and its mechanical properties has posed a challenging issue. This paper seeks to develop a range of single, hybrid, and ensemble models to resolve the problem of accurately estimating the mechanical properties of concrete according to its constituent components as input variables. In this regard, various frameworks incorporating a machine learning technique called decision tree and four metaheuristic optimization algorithms were utilized in model development to emulate the values of tensile and compressive strength. The findings indicated that the decision tree-dynamic arithmetic optimization algorithm hybrid model produced results with an correlation of determination of 0.9919 in compressive strength and 0.9933 in tensile strength, which were on average 1–3 % higher than that of the decision tree-dandelion optimizer algorithm, decision tree-arithmetic optimization algorithm, and decision tree-coot optimization algorithm, indicating superior optimization performance of dynamic arithmetic optimization algorithm. Additionally, the powerful prediction capability of the decision tree + dynamic arithmetic optimization algorithm + dandelion optimizer algorithm + coot optimization algorithm + arithmetic optimization algorithm ensemble model was noticeable with R2 of 0.9882 and 0.9936 in compressive and tensile strength estimation reliable to be used for various data produced in the future. In general, the utilization of coupling techniques to generate hybrid and ensemble models can enhance the accuracy of predictions while reducing the time and costs associated with experimental procedures.
[Display omitted] |
| ArticleNumber | 109922 |
| Author | Tang, HaiLin Qi, Rui Wu, Haiyan Qi, Yongjun |
| Author_xml | – sequence: 1 givenname: Rui surname: Qi fullname: Qi, Rui organization: School of Architectural Engineering, Guangzhou Institute of Science and Technology, Guangzhou, Guangdong 510540, China – sequence: 2 givenname: Haiyan surname: Wu fullname: Wu, Haiyan email: why103392283@126.com organization: School of Management, South China Business College Guangdong University of Foreign Studies, Guangzhou, Guangdong 510545, China – sequence: 3 givenname: Yongjun surname: Qi fullname: Qi, Yongjun email: qyj200702022@baiyunu.edu.cn organization: Faculty of Megadata and Computing, Guangdong Baiyun University, Guangzhou, Guangdong 510450, China – sequence: 4 givenname: HaiLin surname: Tang fullname: Tang, HaiLin organization: Faculty of Megadata and Computing, Guangdong Baiyun University, Guangzhou, Guangdong 510450, China |
| BookMark | eNqFkMtKxDAYhYOM4DjOG7joC3RM0naauBBk8DIw4EbXIU3-TjM0TUliwbe3tS7Eha7-6zlwvku06FwHCF0TvCGYbG9OGxuVs3ZDMc3HFeeUnqElzQqa5pyyxY_-Aq1DOGGMCStwzvMl6vfdACGao4zGdYmrEwuqkZ1Rsk1673rw0UCYDo05Nuk4185b2SlIlOuUhwjJYGRi39toUguxcXr69nD0EMJkGj1AIvvRTarmCp3Xsg2w_q4r9Pb48Lp7Tg8vT_vd_SFVGd7GlGpgULGS8qIoNON5lZWc1nVJpBqbkiiZMclJlTPYVkpTTQvATJdMM0Izkq3Q7eyrvAvBQy2UiV8ho5emFQSLCZ84iRmfmPCJGd8ozn-Je2-s9B__ye5mGYzBBgNeBGVgRKWNBxWFduZvg08BsJCJ |
| CitedBy_id | crossref_primary_10_3390_buildings15010027 crossref_primary_10_13168_cs_2025_0027 crossref_primary_10_1007_s11831_025_10385_7 crossref_primary_10_3390_biomimetics10080515 |
| Cites_doi | 10.1016/j.istruc.2021.11.048 10.1016/j.advengsoft.2017.07.002 10.1016/j.conbuildmat.2020.120950 10.1016/j.jclepro.2021.126032 10.1002/suco.202100213 10.2166/ws.2020.241 10.1016/j.jmrt.2020.06.008 10.1007/s11356-021-13918-2 10.1016/j.conbuildmat.2017.02.118 10.3390/cryst12050569 10.1016/j.engappai.2024.108388 10.1016/j.cemconres.2018.09.006 10.1016/j.cma.2020.113609 10.1109/ACCESS.2022.3146374 10.1016/S0030-3992(99)00004-3 10.1007/s11356-022-22048-2 10.3390/su12030830 10.1016/j.conbuildmat.2013.08.078 10.3390/ma13051023 10.1016/j.eswa.2021.115352 10.3390/ma16114200 10.1186/s44147-023-00274-w 10.1080/14680629.2019.1702583 10.1002/suco.202100250 10.3390/ma14040794 10.1016/j.conbuildmat.2020.120198 10.3390/ma15155194 10.1007/s00366-020-01003-0 10.1016/j.conbuildmat.2018.05.201 10.1080/19648189.2022.2068657 10.1016/S0008-8846(98)00251-8 10.1016/j.engappai.2022.105075 10.1016/j.conbuildmat.2012.12.066 10.1016/j.compstruc.2013.10.006 10.1007/s10064-021-02458-1 10.1109/ACCESS.2017.2738069 10.1016/j.conbuildmat.2008.01.014 10.1071/WR07179 10.1061/(ASCE)MT.1943-5533.0003741 10.1007/s00521-020-05525-y 10.12989/cac.2013.12.3.285 10.3390/ma14227034 10.1016/j.compstruc.2010.07.003 10.1016/j.aei.2023.102004 10.1177/1369433220986637 10.1016/j.conbuildmat.2020.118152 10.1016/j.engappai.2013.03.014 10.1007/s11676-011-0164-x 10.1016/j.conbuildmat.2022.126694 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.mtcomm.2024.109922 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2352-4928 |
| ExternalDocumentID | 10_1016_j_mtcomm_2024_109922 S2352492824019032 |
| GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABXZ AACTN AAEDT AAEDW AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE ROL SPC SPCBC SSM SSZ T5K ~G- AATTM AAYWO AAYXX ABJNI ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG |
| ID | FETCH-LOGICAL-c306t-2de8eb8729555d894b3792ff71ac79271ca38a91b48e6bcd2d25e08d78d812313 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001293571700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2352-4928 |
| IngestDate | Sat Nov 29 03:28:13 EST 2025 Tue Nov 18 22:40:45 EST 2025 Sat Sep 14 18:13:03 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | B W/B High-performance concrete Decision tree DTCA DT DAOA AOA SF COA SI DOA W Ensemble learning SP MK DTAO R2 SHAP Meta-heuristic algorithms RMSE DTDA Compressive and tensile strength CS MAE NMSE HPC FA DTDO DTDDAC Ca TS |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-2de8eb8729555d894b3792ff71ac79271ca38a91b48e6bcd2d25e08d78d812313 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_mtcomm_2024_109922 crossref_primary_10_1016_j_mtcomm_2024_109922 elsevier_sciencedirect_doi_10_1016_j_mtcomm_2024_109922 |
| PublicationCentury | 2000 |
| PublicationDate | August 2024 2024-08-00 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Materials today communications |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhang, Liu, Ma (bib54) 2011; vol. 22 Awoyera, Kirgiz, Viloria, Ovallos-Gazabon (bib27) 2020; vol. 9 Habib, Cherri (bib58) 1998; vol. 30 Liu (bib36) 2022; vol. 2022 Karbassi, Mohebi, Rezaee, Lestuzzi (bib45) 2014; vol. 130 Hu, Zheng, Abualigah, Hussien (bib52) 2023; vol. 57 Sadaghat, Ebrahimi, Souri, Yahyavi Niar, Akbarzadeh (bib9) 2024; vol. 133 Sedaghat, Tejani, Kumar (bib10) 2023; vol. 002 Khajeh, Ebrahimi, MolaAbasi, Jamshidi Chenari, Payan (bib4) 2021; vol. 80 Słoński (bib29) 2010; vol. 88 Shah, Rehman, Javed, Iftikhar (bib25) 2022; vol. 23 Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (bib49) 2021; vol. 376 Zhao, Zhang, Ma, Chen (bib51) 2022; vol. 114 Duan, Asteris, Nguyen, Bui, Moayedi (bib22) 2021; vol. 37 Farooq, Ahmed, Akbar, Aslam, Alyousef (bib34) 2021; vol. 292 Varo, Amat (bib55) 2008; vol. 35 Gupta, Sachdeva (bib16) 2021; vol. 22 Tavana Amlashi, Mohammadi Golafshani, Ebrahimi, Behnood (bib12) 2023; vol. 27 Masoumi, Najjar-Ghabel, Safarzadeh, Sadaghat (bib6) 2020; vol. 20 Van Dao (bib30) 2020; vol. 12 Zhang, Afzal (bib8) 2022; vol. 23 Chou, Truong (bib23) 2021; vol. 389 Ahmad (bib46) 2021; vol. 14 Young, Hall, Pilon, Gupta, Sant (bib20) 2019; vol. 115 Erdal (bib47) 2013; vol. 26 Mazloom, Yoosefi (bib13) 2013; vol. 12 Nguyen, Vu, Vo, Thai (bib38) 2021; vol. 266 Lin, Wu, Lin, Wen, Li (bib59) 2017; vol. 5 Naruei, Keynia (bib56) 2021; vol. 183 Ziyad Sami (bib24) 2023; vol. 18 Gong, Zhang (bib15) 2023; vol. 70 Xu (bib33) 2021; vol. 14 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib57) 2017; vol. 114 Rezaiee-Pajand, Abad, Karimipour, Rezaiee-Pajand (bib26) 2021; vol. 40 G. Muthumari and K.N. Sekaran, “Strength and Durability Properties of Metakaolin Amalgamated High Performance Concrete”. Kaloop, Kumar, Samui, Hu, Kim (bib31) 2020; vol. 264 Chou, Pham (bib21) 2013; vol. 49 Aköz, Türker, Koral, Yüzer (bib3) 1999; vol. 29 Al-Shamiri, Yuan, Kim (bib32) 2020; vol. 13 El-Din, Eisa, Aziz, Ibrahim (bib40) 2017; vol. 140 Zhu, Ahmad, Ahmad, Vatin, Mohamed, Fathi (bib7) 2022; vol. 12 Zheng, Luo, Wang (bib11) 2013; vol. 41 Thota, Sinha (bib48) 2022; vol. 44 Ren, Ding, Dai, Jiang, De Schutter (bib14) 2021; vol. 33 Singh, Gupta (bib41) 2023; vol. 05 Prasad, Eskandari, Reddy (bib1) 2009; vol. 23 Li, Song (bib39) 2022; vol. 324 Bui, Nguyen, Chou, Nguyen-Xuan, Ngo (bib28) 2018; vol. 180 Rad, Ohadi, Jafari-Asl, Vatani, Ahmadabadi, Correia (bib17) 2022; vol. 35 Kumar, Shafiq, Kumar, Jhatial (bib42) 2021; vol. 28 Behnood, Golafshani (bib61) 2020; vol. 243 A. Kumar and H. Gaur, “EXPERIMENTAL STUDY ON HIGH PERFORMANCE CONCRETE BY PARTIAL REPLACEMENT OF CEMENT WITH METAKAOLIN,” 2020. Lee, Nguyen, Karamanli, Lee, Vo (bib35) 2022 Andrushia, A, Lubloy (bib19) 2021; vol. 24 Khodadadi, Snasel, Mirjalili (bib50) 2022; vol. 10 Mohammed, Burhan, Ghafor, Sarwar, Mahmood (bib18) 2021; vol. 33 Wu, Zhou (bib37) 2022; vol. 29 Elhammoudy (bib53) 2023 Botchkarev (bib60) 2018 Zheng (bib2) 2022; vol. 15 Akbarzadeh, Ghafourian, Anvari, Pourhanasa, Nehdi (bib5) 2023; vol. 16 Habib (10.1016/j.mtcomm.2024.109922_bib58) 1998; vol. 30 Słoński (10.1016/j.mtcomm.2024.109922_bib29) 2010; vol. 88 Abualigah (10.1016/j.mtcomm.2024.109922_bib49) 2021; vol. 376 Rezaiee-Pajand (10.1016/j.mtcomm.2024.109922_bib26) 2021; vol. 40 El-Din (10.1016/j.mtcomm.2024.109922_bib40) 2017; vol. 140 Li (10.1016/j.mtcomm.2024.109922_bib39) 2022; vol. 324 Gupta (10.1016/j.mtcomm.2024.109922_bib16) 2021; vol. 22 Shah (10.1016/j.mtcomm.2024.109922_bib25) 2022; vol. 23 Liu (10.1016/j.mtcomm.2024.109922_bib36) 2022; vol. 2022 Varo (10.1016/j.mtcomm.2024.109922_bib55) 2008; vol. 35 Al-Shamiri (10.1016/j.mtcomm.2024.109922_bib32) 2020; vol. 13 Lee (10.1016/j.mtcomm.2024.109922_bib35) 2022 Karbassi (10.1016/j.mtcomm.2024.109922_bib45) 2014; vol. 130 Naruei (10.1016/j.mtcomm.2024.109922_bib56) 2021; vol. 183 Awoyera (10.1016/j.mtcomm.2024.109922_bib27) 2020; vol. 9 Zheng (10.1016/j.mtcomm.2024.109922_bib11) 2013; vol. 41 Chou (10.1016/j.mtcomm.2024.109922_bib21) 2013; vol. 49 Kumar (10.1016/j.mtcomm.2024.109922_bib42) 2021; vol. 28 Zhang (10.1016/j.mtcomm.2024.109922_bib8) 2022; vol. 23 Ziyad Sami (10.1016/j.mtcomm.2024.109922_bib24) 2023; vol. 18 Zhao (10.1016/j.mtcomm.2024.109922_bib51) 2022; vol. 114 Akbarzadeh (10.1016/j.mtcomm.2024.109922_bib5) 2023; vol. 16 Masoumi (10.1016/j.mtcomm.2024.109922_bib6) 2020; vol. 20 Young (10.1016/j.mtcomm.2024.109922_bib20) 2019; vol. 115 Prasad (10.1016/j.mtcomm.2024.109922_bib1) 2009; vol. 23 10.1016/j.mtcomm.2024.109922_bib44 Elhammoudy (10.1016/j.mtcomm.2024.109922_bib53) 2023 10.1016/j.mtcomm.2024.109922_bib43 Mirjalili (10.1016/j.mtcomm.2024.109922_bib57) 2017; vol. 114 Sedaghat (10.1016/j.mtcomm.2024.109922_bib10) 2023; vol. 002 Mazloom (10.1016/j.mtcomm.2024.109922_bib13) 2013; vol. 12 Rad (10.1016/j.mtcomm.2024.109922_bib17) 2022; vol. 35 Khodadadi (10.1016/j.mtcomm.2024.109922_bib50) 2022; vol. 10 Aköz (10.1016/j.mtcomm.2024.109922_bib3) 1999; vol. 29 Zhu (10.1016/j.mtcomm.2024.109922_bib7) 2022; vol. 12 Nguyen (10.1016/j.mtcomm.2024.109922_bib38) 2021; vol. 266 Khajeh (10.1016/j.mtcomm.2024.109922_bib4) 2021; vol. 80 Behnood (10.1016/j.mtcomm.2024.109922_bib61) 2020; vol. 243 Sadaghat (10.1016/j.mtcomm.2024.109922_bib9) 2024; vol. 133 Zhang (10.1016/j.mtcomm.2024.109922_bib54) 2011; vol. 22 Tavana Amlashi (10.1016/j.mtcomm.2024.109922_bib12) 2023; vol. 27 Thota (10.1016/j.mtcomm.2024.109922_bib48) 2022; vol. 44 Andrushia (10.1016/j.mtcomm.2024.109922_bib19) 2021; vol. 24 Ahmad (10.1016/j.mtcomm.2024.109922_bib46) 2021; vol. 14 Duan (10.1016/j.mtcomm.2024.109922_bib22) 2021; vol. 37 Gong (10.1016/j.mtcomm.2024.109922_bib15) 2023; vol. 70 Mohammed (10.1016/j.mtcomm.2024.109922_bib18) 2021; vol. 33 Hu (10.1016/j.mtcomm.2024.109922_bib52) 2023; vol. 57 Wu (10.1016/j.mtcomm.2024.109922_bib37) 2022; vol. 29 Lin (10.1016/j.mtcomm.2024.109922_bib59) 2017; vol. 5 Botchkarev (10.1016/j.mtcomm.2024.109922_bib60) 2018; 03006 Ren (10.1016/j.mtcomm.2024.109922_bib14) 2021; vol. 33 Van Dao (10.1016/j.mtcomm.2024.109922_bib30) 2020; vol. 12 Bui (10.1016/j.mtcomm.2024.109922_bib28) 2018; vol. 180 Kaloop (10.1016/j.mtcomm.2024.109922_bib31) 2020; vol. 264 Farooq (10.1016/j.mtcomm.2024.109922_bib34) 2021; vol. 292 Zheng (10.1016/j.mtcomm.2024.109922_bib2) 2022; vol. 15 Singh (10.1016/j.mtcomm.2024.109922_bib41) 2023; vol. 05 Erdal (10.1016/j.mtcomm.2024.109922_bib47) 2013; vol. 26 Chou (10.1016/j.mtcomm.2024.109922_bib23) 2021; vol. 389 Xu (10.1016/j.mtcomm.2024.109922_bib33) 2021; vol. 14 |
| References_xml | – year: 2023 ident: bib53 article-title: Dandelion optimizer algorithm-based method for accurate photovoltaic model parameter identification publication-title: Energy Convers. Manag. X – volume: vol. 22 start-page: 1521 year: 2021 end-page: 1542 ident: bib16 article-title: Prediction of compressive and flexural strengths of jarosite mixed cement concrete pavements using artificial neural networks publication-title: Road. Mater. Pavement Des. – volume: vol. 40 year: 2021 ident: bib26 article-title: Propose new implement models to determine the compressive, tensile and flexural strengths of recycled coarse aggregate concrete via imperialist competitive algorithm publication-title: J. Build. Eng. – volume: vol. 27 start-page: 961 year: 2023 end-page: 983 ident: bib12 article-title: Estimation of the compressive strength of green concretes containing rice husk ash: a comparison of different machine learning approaches publication-title: Eur. J. Environ. Civ. Eng. – volume: vol. 14 start-page: 7034 year: 2021 ident: bib33 article-title: Computation of high-performance concrete compressive strength using standalone and ensembled machine learning techniques publication-title: Mater. (Basel) – volume: vol. 37 start-page: 3329 year: 2021 end-page: 3346 ident: bib22 article-title: A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model publication-title: Eng. Comput. – volume: vol. 115 start-page: 379 year: 2019 end-page: 388 ident: bib20 article-title: Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods publication-title: Cem. Concr. Res. – reference: A. Kumar and H. Gaur, “EXPERIMENTAL STUDY ON HIGH PERFORMANCE CONCRETE BY PARTIAL REPLACEMENT OF CEMENT WITH METAKAOLIN,” 2020. – volume: vol. 23 start-page: 2435 year: 2022 end-page: 2449 ident: bib25 article-title: Prediction of compressive and splitting tensile strength of concrete with fly ash by using gene expression programming publication-title: Struct. Concr. – volume: vol. 29 start-page: 89198 year: 2022 end-page: 89209 ident: bib37 article-title: Splitting tensile strength prediction of sustainable high-performance concrete using machine learning techniques publication-title: Environ. Sci. Pollut. Res. – volume: vol. 243 year: 2020 ident: bib61 article-title: Machine learning study of the mechanical properties of concretes containing waste foundry sand publication-title: Constr. Build. Mater. – volume: vol. 57 year: 2023 ident: bib52 article-title: DETDO: an adaptive hybrid dandelion optimizer for engineering optimization publication-title: Adv. Eng. Inform. – volume: vol. 33 start-page: 7851 year: 2021 end-page: 7873 ident: bib18 article-title: Artificial neural network (ANN), M5P-tree, and regression analyses to predict the early age compression strength of concrete modified with DBC-21 and VK-98 polymers publication-title: Neural Comput. Appl. – volume: vol. 114 year: 2022 ident: bib51 article-title: Dandelion optimizer: a nature-inspired metaheuristic algorithm for engineering applications publication-title: Eng. Appl. Artif. Intell. – volume: vol. 2022 year: 2022 ident: bib36 article-title: High-performance concrete strength prediction based on machine learning publication-title: Comput. Intell. Neurosci. – volume: vol. 18 year: 2023 ident: bib24 article-title: Feasibility analysis for predicting the compressive and tensile strength of concrete using machine learning algorithms publication-title: Case Stud. Constr. Mater. – volume: vol. 44 start-page: 10116 year: 2022 end-page: 10134 ident: bib48 article-title: An enhanced arithmetic optimization algorithm for global maximum power point tracking of photovoltaic systems under dynamic irradiance patterns publication-title: Energy Sources, Part A Recover. Util. Environ. Eff. – volume: vol. 14 start-page: 794 year: 2021 ident: bib46 article-title: Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm publication-title: Mater. (Basel) – volume: vol. 49 start-page: 554 year: 2013 end-page: 563 ident: bib21 article-title: Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength publication-title: Constr. Build. Mater. – volume: vol. 5 start-page: 16568 year: 2017 end-page: 16575 ident: bib59 article-title: An ensemble random forest algorithm for insurance big data analysis publication-title: IEEE Access – volume: vol. 29 start-page: 537 year: 1999 end-page: 544 ident: bib3 article-title: Effects of raised temperature of sulfate solutions on the sulfate resistance of mortars with and without silica fume publication-title: Cem. Concr. Res. – volume: vol. 24 start-page: 1896 year: 2021 end-page: 1909 ident: bib19 article-title: Deep learning based thermal crack detection on structural concrete exposed to elevated temperature publication-title: Adv. Struct. Eng. – volume: vol. 22 start-page: 289 year: 2011 end-page: 294 ident: bib54 article-title: Territory and territorial behavior of migrating Common Coot (Fulica atra) publication-title: J. Res. – volume: vol. 28 start-page: 49074 year: 2021 end-page: 49088 ident: bib42 article-title: Investigating embodied carbon, mechanical properties, and durability of high-performance concrete using ternary and quaternary blends of metakaolin, nano-silica, and fly ash publication-title: Environ. Sci. Pollut. Res. – volume: vol. 26 start-page: 1689 year: 2013 end-page: 1697 ident: bib47 article-title: Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction publication-title: Eng. Appl. Artif. Intell. – volume: vol. 183 year: 2021 ident: bib56 article-title: A new optimization method based on COOT bird natural life model publication-title: Expert Syst. Appl. – volume: vol. 12 start-page: 285 year: 2013 end-page: 301 ident: bib13 article-title: Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks publication-title: Comput. Concr. – volume: vol. 9 start-page: 9016 year: 2020 end-page: 9028 ident: bib27 article-title: Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques publication-title: J. Mater. Res. Technol. – volume: vol. 140 start-page: 203 year: 2017 end-page: 209 ident: bib40 article-title: Mechanical performance of high strength concrete made from high volume of Metakaolin and hybrid fibers publication-title: Constr. Build. Mater. – volume: vol. 35 start-page: 722 year: 2022 end-page: 733 ident: bib17 article-title: GNDO-SVR: An efficient surrogate modeling approach for reliability-based design optimization of concrete dams publication-title: Structures – volume: vol. 114 start-page: 163 year: 2017 end-page: 191 ident: bib57 article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. – volume: vol. 15 start-page: 5194 year: 2022 ident: bib2 article-title: Flexural strength prediction of steel fiber-reinforced concrete using artificial intelligence publication-title: Mater. (Basel) – volume: vol. 292 year: 2021 ident: bib34 article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: a comparison and optimization of models using ensemble learners publication-title: J. Clean. Prod. – volume: vol. 70 start-page: 107 year: 2023 ident: bib15 article-title: Predict the compressive strength of ultra high-performance concrete by a hybrid method of machine learning publication-title: J. Eng. Appl. Sci. – volume: vol. 35 start-page: 612 year: 2008 end-page: 616 ident: bib55 article-title: Differences in foraging behaviour of sympatric coots with different conservation status publication-title: Wildl. Res. – volume: vol. 30 start-page: 515 year: 1998 end-page: 525 ident: bib58 article-title: Parallel quaternary signed-digit arithmetic operations: addition, subtraction, multiplication and division publication-title: Opt. Laser Technol. – volume: vol. 133 year: 2024 ident: bib9 article-title: Evaluating strength properties of eco-friendly seashell-containing concrete: comparative analysis of hybrid and ensemble boosting methods based on environmental effects of seashell usage publication-title: Eng. Appl. Artif. Intell. – volume: vol. 264 year: 2020 ident: bib31 article-title: Compressive strength prediction of high-performance concrete using gradient tree boosting machine publication-title: Constr. Build. Mater. – volume: vol. 10 start-page: 16188 year: 2022 end-page: 16208 ident: bib50 article-title: Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints publication-title: IEEE Access – volume: vol. 05 start-page: 2582 year: 2023 end-page: 5208 ident: bib41 article-title: Advancement of high performance concrete utilizing natural admixture publication-title: IRJMETS – volume: vol. 389 year: 2021 ident: bib23 article-title: A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean publication-title: Appl. Math. Comput. – volume: vol. 88 start-page: 1248 year: 2010 end-page: 1253 ident: bib29 article-title: A comparison of model selection methods for compressive strength prediction of high-performance concrete using neural networks publication-title: Comput. Struct. – year: 2022 ident: bib35 article-title: Super learner machine-learning algorithms for compressive strength prediction of high performance concrete publication-title: Struct. Concr. – volume: vol. 130 start-page: 46 year: 2014 end-page: 56 ident: bib45 article-title: Damage prediction for regular reinforced concrete buildings using the decision tree algorithm publication-title: Comput. Struct. – volume: vol. 13 start-page: 1023 year: 2020 ident: bib32 article-title: Non-tuned machine learning approach for predicting the compressive strength of high-performance concrete publication-title: Mater. (Basel) – volume: vol. 12 start-page: 830 year: 2020 ident: bib30 article-title: A sensitivity and robustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a Monte Carlo simulation publication-title: Sustainability – volume: vol. 180 start-page: 320 year: 2018 end-page: 333 ident: bib28 article-title: A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete publication-title: Constr. Build. Mater. – reference: G. Muthumari and K.N. Sekaran, “Strength and Durability Properties of Metakaolin Amalgamated High Performance Concrete”. – volume: vol. 002 year: 2023 ident: bib10 article-title: Predict the maximum dry density of soil based on individual and hybrid methods of machine learning publication-title: Adv. Eng. Intell. Syst. – volume: vol. 266 year: 2021 ident: bib38 article-title: Efficient machine learning models for prediction of concrete strengths publication-title: Constr. Build. Mater. – volume: vol. 23 start-page: 117 year: 2009 end-page: 128 ident: bib1 article-title: Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN publication-title: Constr. Build. Mater. – volume: vol. 23 start-page: 2477 year: 2022 end-page: 2495 ident: bib8 article-title: Prediction of the elastic modulus of recycled aggregate concrete applying hybrid artificial intelligence and machine learning algorithms publication-title: Struct. Concr. – volume: vol. 80 start-page: 8615 year: 2021 end-page: 8632 ident: bib4 article-title: Effect of EPS beads in lightening a typical zeolite and cement-treated sand publication-title: Bull. Eng. Geol. Environ. – volume: vol. 12 start-page: 569 year: 2022 ident: bib7 article-title: Predicting the splitting tensile strength of recycled aggregate concrete using individual and ensemble machine learning approaches publication-title: Crystals – volume: vol. 16 start-page: 4200 year: 2023 ident: bib5 article-title: Estimating compressive strength of concrete using neural electromagnetic field optimization publication-title: Mater. (Basel) – year: 2018 ident: bib60 article-title: Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and typology publication-title: arXiv Prepr. arXiv1809 – volume: vol. 376 year: 2021 ident: bib49 article-title: The arithmetic optimization algorithm publication-title: Comput. Methods Appl. Mech. Eng. – volume: vol. 20 start-page: 3487 year: 2020 end-page: 3501 ident: bib6 article-title: Automatic calibration of the groundwater simulation model with high parameter dimensionality using sequential uncertainty fitting approach publication-title: Water Supply – volume: vol. 41 start-page: 844 year: 2013 end-page: 851 ident: bib11 article-title: Compressive and tensile properties of reactive powder concrete with steel fibres at elevated temperatures publication-title: Constr. Build. Mater. – volume: vol. 324 year: 2022 ident: bib39 article-title: High-performance concrete strength prediction based on ensemble learning publication-title: Constr. Build. Mater. – volume: vol. 33 start-page: 4021135 year: 2021 ident: bib14 article-title: Prediction of compressive strength of concrete with manufactured sand by ensemble classification and regression tree method publication-title: J. Mater. Civ. Eng. – volume: vol. 35 start-page: 722 year: 2022 ident: 10.1016/j.mtcomm.2024.109922_bib17 article-title: GNDO-SVR: An efficient surrogate modeling approach for reliability-based design optimization of concrete dams publication-title: Structures doi: 10.1016/j.istruc.2021.11.048 – ident: 10.1016/j.mtcomm.2024.109922_bib44 – volume: vol. 44 start-page: 10116 issue: 4 year: 2022 ident: 10.1016/j.mtcomm.2024.109922_bib48 article-title: An enhanced arithmetic optimization algorithm for global maximum power point tracking of photovoltaic systems under dynamic irradiance patterns publication-title: Energy Sources, Part A Recover. Util. Environ. Eff. – volume: vol. 114 start-page: 163 year: 2017 ident: 10.1016/j.mtcomm.2024.109922_bib57 article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – volume: vol. 266 year: 2021 ident: 10.1016/j.mtcomm.2024.109922_bib38 article-title: Efficient machine learning models for prediction of concrete strengths publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120950 – volume: vol. 292 year: 2021 ident: 10.1016/j.mtcomm.2024.109922_bib34 article-title: Predictive modeling for sustainable high-performance concrete from industrial wastes: a comparison and optimization of models using ensemble learners publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126032 – volume: vol. 23 start-page: 2435 issue: 4 year: 2022 ident: 10.1016/j.mtcomm.2024.109922_bib25 article-title: Prediction of compressive and splitting tensile strength of concrete with fly ash by using gene expression programming publication-title: Struct. Concr. doi: 10.1002/suco.202100213 – volume: vol. 20 start-page: 3487 issue: 8 year: 2020 ident: 10.1016/j.mtcomm.2024.109922_bib6 article-title: Automatic calibration of the groundwater simulation model with high parameter dimensionality using sequential uncertainty fitting approach publication-title: Water Supply doi: 10.2166/ws.2020.241 – volume: vol. 9 start-page: 9016 issue: 4 year: 2020 ident: 10.1016/j.mtcomm.2024.109922_bib27 article-title: Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2020.06.008 – volume: vol. 2022 year: 2022 ident: 10.1016/j.mtcomm.2024.109922_bib36 article-title: High-performance concrete strength prediction based on machine learning publication-title: Comput. Intell. Neurosci. – volume: vol. 05 start-page: 2582 issue: 01 year: 2023 ident: 10.1016/j.mtcomm.2024.109922_bib41 article-title: Advancement of high performance concrete utilizing natural admixture publication-title: IRJMETS – volume: vol. 28 start-page: 49074 year: 2021 ident: 10.1016/j.mtcomm.2024.109922_bib42 article-title: Investigating embodied carbon, mechanical properties, and durability of high-performance concrete using ternary and quaternary blends of metakaolin, nano-silica, and fly ash publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-13918-2 – volume: vol. 140 start-page: 203 year: 2017 ident: 10.1016/j.mtcomm.2024.109922_bib40 article-title: Mechanical performance of high strength concrete made from high volume of Metakaolin and hybrid fibers publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.02.118 – volume: vol. 12 start-page: 569 issue: 5 year: 2022 ident: 10.1016/j.mtcomm.2024.109922_bib7 article-title: Predicting the splitting tensile strength of recycled aggregate concrete using individual and ensemble machine learning approaches publication-title: Crystals doi: 10.3390/cryst12050569 – volume: vol. 133 year: 2024 ident: 10.1016/j.mtcomm.2024.109922_bib9 article-title: Evaluating strength properties of eco-friendly seashell-containing concrete: comparative analysis of hybrid and ensemble boosting methods based on environmental effects of seashell usage publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.108388 – year: 2023 ident: 10.1016/j.mtcomm.2024.109922_bib53 article-title: Dandelion optimizer algorithm-based method for accurate photovoltaic model parameter identification publication-title: Energy Convers. Manag. X – volume: vol. 115 start-page: 379 year: 2019 ident: 10.1016/j.mtcomm.2024.109922_bib20 article-title: Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2018.09.006 – volume: vol. 376 year: 2021 ident: 10.1016/j.mtcomm.2024.109922_bib49 article-title: The arithmetic optimization algorithm publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113609 – volume: vol. 18 year: 2023 ident: 10.1016/j.mtcomm.2024.109922_bib24 article-title: Feasibility analysis for predicting the compressive and tensile strength of concrete using machine learning algorithms publication-title: Case Stud. Constr. Mater. – volume: vol. 10 start-page: 16188 year: 2022 ident: 10.1016/j.mtcomm.2024.109922_bib50 article-title: Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3146374 – volume: vol. 30 start-page: 515 issue: 8 year: 1998 ident: 10.1016/j.mtcomm.2024.109922_bib58 article-title: Parallel quaternary signed-digit arithmetic operations: addition, subtraction, multiplication and division publication-title: Opt. Laser Technol. doi: 10.1016/S0030-3992(99)00004-3 – volume: vol. 29 start-page: 89198 issue: 59 year: 2022 ident: 10.1016/j.mtcomm.2024.109922_bib37 article-title: Splitting tensile strength prediction of sustainable high-performance concrete using machine learning techniques publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-22048-2 – volume: vol. 12 start-page: 830 issue: 3 year: 2020 ident: 10.1016/j.mtcomm.2024.109922_bib30 article-title: A sensitivity and robustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a Monte Carlo simulation publication-title: Sustainability doi: 10.3390/su12030830 – volume: vol. 49 start-page: 554 year: 2013 ident: 10.1016/j.mtcomm.2024.109922_bib21 article-title: Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.08.078 – volume: vol. 13 start-page: 1023 issue: 5 year: 2020 ident: 10.1016/j.mtcomm.2024.109922_bib32 article-title: Non-tuned machine learning approach for predicting the compressive strength of high-performance concrete publication-title: Mater. (Basel) doi: 10.3390/ma13051023 – volume: vol. 183 year: 2021 ident: 10.1016/j.mtcomm.2024.109922_bib56 article-title: A new optimization method based on COOT bird natural life model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115352 – volume: vol. 16 start-page: 4200 issue: 11 year: 2023 ident: 10.1016/j.mtcomm.2024.109922_bib5 article-title: Estimating compressive strength of concrete using neural electromagnetic field optimization publication-title: Mater. (Basel) doi: 10.3390/ma16114200 – volume: vol. 70 start-page: 107 issue: 1 year: 2023 ident: 10.1016/j.mtcomm.2024.109922_bib15 article-title: Predict the compressive strength of ultra high-performance concrete by a hybrid method of machine learning publication-title: J. Eng. Appl. Sci. doi: 10.1186/s44147-023-00274-w – volume: vol. 22 start-page: 1521 issue: 7 year: 2021 ident: 10.1016/j.mtcomm.2024.109922_bib16 article-title: Prediction of compressive and flexural strengths of jarosite mixed cement concrete pavements using artificial neural networks publication-title: Road. Mater. Pavement Des. doi: 10.1080/14680629.2019.1702583 – volume: 03006 year: 2018 ident: 10.1016/j.mtcomm.2024.109922_bib60 article-title: Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and typology publication-title: arXiv Prepr. arXiv1809 – volume: vol. 23 start-page: 2477 issue: 4 year: 2022 ident: 10.1016/j.mtcomm.2024.109922_bib8 article-title: Prediction of the elastic modulus of recycled aggregate concrete applying hybrid artificial intelligence and machine learning algorithms publication-title: Struct. Concr. doi: 10.1002/suco.202100250 – volume: vol. 14 start-page: 794 issue: 4 year: 2021 ident: 10.1016/j.mtcomm.2024.109922_bib46 article-title: Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm publication-title: Mater. (Basel) doi: 10.3390/ma14040794 – volume: vol. 389 year: 2021 ident: 10.1016/j.mtcomm.2024.109922_bib23 article-title: A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean publication-title: Appl. Math. Comput. – volume: vol. 264 year: 2020 ident: 10.1016/j.mtcomm.2024.109922_bib31 article-title: Compressive strength prediction of high-performance concrete using gradient tree boosting machine publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.120198 – volume: vol. 15 start-page: 5194 issue: 15 year: 2022 ident: 10.1016/j.mtcomm.2024.109922_bib2 article-title: Flexural strength prediction of steel fiber-reinforced concrete using artificial intelligence publication-title: Mater. (Basel) doi: 10.3390/ma15155194 – volume: vol. 37 start-page: 3329 year: 2021 ident: 10.1016/j.mtcomm.2024.109922_bib22 article-title: A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model publication-title: Eng. Comput. doi: 10.1007/s00366-020-01003-0 – volume: vol. 180 start-page: 320 year: 2018 ident: 10.1016/j.mtcomm.2024.109922_bib28 article-title: A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.05.201 – volume: vol. 27 start-page: 961 issue: 2 year: 2023 ident: 10.1016/j.mtcomm.2024.109922_bib12 article-title: Estimation of the compressive strength of green concretes containing rice husk ash: a comparison of different machine learning approaches publication-title: Eur. J. Environ. Civ. Eng. doi: 10.1080/19648189.2022.2068657 – volume: vol. 29 start-page: 537 issue: 4 year: 1999 ident: 10.1016/j.mtcomm.2024.109922_bib3 article-title: Effects of raised temperature of sulfate solutions on the sulfate resistance of mortars with and without silica fume publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(98)00251-8 – year: 2022 ident: 10.1016/j.mtcomm.2024.109922_bib35 article-title: Super learner machine-learning algorithms for compressive strength prediction of high performance concrete publication-title: Struct. Concr. – volume: vol. 114 year: 2022 ident: 10.1016/j.mtcomm.2024.109922_bib51 article-title: Dandelion optimizer: a nature-inspired metaheuristic algorithm for engineering applications publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105075 – volume: vol. 002 issue: 03 year: 2023 ident: 10.1016/j.mtcomm.2024.109922_bib10 article-title: Predict the maximum dry density of soil based on individual and hybrid methods of machine learning publication-title: Adv. Eng. Intell. Syst. – volume: vol. 41 start-page: 844 year: 2013 ident: 10.1016/j.mtcomm.2024.109922_bib11 article-title: Compressive and tensile properties of reactive powder concrete with steel fibres at elevated temperatures publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.12.066 – volume: vol. 130 start-page: 46 year: 2014 ident: 10.1016/j.mtcomm.2024.109922_bib45 article-title: Damage prediction for regular reinforced concrete buildings using the decision tree algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2013.10.006 – volume: vol. 80 start-page: 8615 issue: 11 year: 2021 ident: 10.1016/j.mtcomm.2024.109922_bib4 article-title: Effect of EPS beads in lightening a typical zeolite and cement-treated sand publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-021-02458-1 – ident: 10.1016/j.mtcomm.2024.109922_bib43 – volume: vol. 5 start-page: 16568 year: 2017 ident: 10.1016/j.mtcomm.2024.109922_bib59 article-title: An ensemble random forest algorithm for insurance big data analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2738069 – volume: vol. 23 start-page: 117 issue: 1 year: 2009 ident: 10.1016/j.mtcomm.2024.109922_bib1 article-title: Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2008.01.014 – volume: vol. 40 year: 2021 ident: 10.1016/j.mtcomm.2024.109922_bib26 article-title: Propose new implement models to determine the compressive, tensile and flexural strengths of recycled coarse aggregate concrete via imperialist competitive algorithm publication-title: J. Build. Eng. – volume: vol. 35 start-page: 612 issue: 7 year: 2008 ident: 10.1016/j.mtcomm.2024.109922_bib55 article-title: Differences in foraging behaviour of sympatric coots with different conservation status publication-title: Wildl. Res. doi: 10.1071/WR07179 – volume: vol. 33 start-page: 4021135 issue: 7 year: 2021 ident: 10.1016/j.mtcomm.2024.109922_bib14 article-title: Prediction of compressive strength of concrete with manufactured sand by ensemble classification and regression tree method publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0003741 – volume: vol. 33 start-page: 7851 issue: 13 year: 2021 ident: 10.1016/j.mtcomm.2024.109922_bib18 article-title: Artificial neural network (ANN), M5P-tree, and regression analyses to predict the early age compression strength of concrete modified with DBC-21 and VK-98 polymers publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05525-y – volume: vol. 12 start-page: 285 issue: 3 year: 2013 ident: 10.1016/j.mtcomm.2024.109922_bib13 article-title: Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks publication-title: Comput. Concr. doi: 10.12989/cac.2013.12.3.285 – volume: vol. 14 start-page: 7034 issue: 22 year: 2021 ident: 10.1016/j.mtcomm.2024.109922_bib33 article-title: Computation of high-performance concrete compressive strength using standalone and ensembled machine learning techniques publication-title: Mater. (Basel) doi: 10.3390/ma14227034 – volume: vol. 88 start-page: 1248 issue: 21–22 year: 2010 ident: 10.1016/j.mtcomm.2024.109922_bib29 article-title: A comparison of model selection methods for compressive strength prediction of high-performance concrete using neural networks publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2010.07.003 – volume: vol. 57 year: 2023 ident: 10.1016/j.mtcomm.2024.109922_bib52 article-title: DETDO: an adaptive hybrid dandelion optimizer for engineering optimization publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2023.102004 – volume: vol. 24 start-page: 1896 issue: 9 year: 2021 ident: 10.1016/j.mtcomm.2024.109922_bib19 article-title: Deep learning based thermal crack detection on structural concrete exposed to elevated temperature publication-title: Adv. Struct. Eng. doi: 10.1177/1369433220986637 – volume: vol. 243 year: 2020 ident: 10.1016/j.mtcomm.2024.109922_bib61 article-title: Machine learning study of the mechanical properties of concretes containing waste foundry sand publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118152 – volume: vol. 26 start-page: 1689 issue: 7 year: 2013 ident: 10.1016/j.mtcomm.2024.109922_bib47 article-title: Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2013.03.014 – volume: vol. 22 start-page: 289 issue: 2 year: 2011 ident: 10.1016/j.mtcomm.2024.109922_bib54 article-title: Territory and territorial behavior of migrating Common Coot (Fulica atra) publication-title: J. Res. doi: 10.1007/s11676-011-0164-x – volume: vol. 324 year: 2022 ident: 10.1016/j.mtcomm.2024.109922_bib39 article-title: High-performance concrete strength prediction based on ensemble learning publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.126694 |
| SSID | ssj0001850494 |
| Score | 2.3232257 |
| Snippet | Concrete's workability and durability are influenced by its mechanical properties, including Tensile and Compressive strength. High-performance concrete... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109922 |
| SubjectTerms | Compressive and tensile strength Decision tree Ensemble learning High-performance concrete Meta-heuristic algorithms |
| Title | Investigation of mechanical properties of high-performance concrete via multi-method of regression tree approach |
| URI | https://dx.doi.org/10.1016/j.mtcomm.2024.109922 |
| Volume | 40 |
| WOSCitedRecordID | wos001293571700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 2352-4928 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001850494 issn: 2352-4928 databaseCode: AIEXJ dateStart: 20140901 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbLpodeSkNbmr7QobeisLZsSzqGktKENPSRwvZkZEkOuyRes_Uu6al_vTOW_GgS-oJejNFKsq35VvPNMDMi5KW2MjGgaJnCurMJ6DSmQTOwWWldZjPpbGzbwybE6amcz9X7yeR7lwuzvRBVJa-uVP1fRQ1tIGxMnf0LcfeTQgPcg9DhCmKH6x8JflQ5w3PBS4fZva0wanS9r7GGaksSwTBn9ShzAGxjIJGNe7VdaB9qyPwJ09h77c59zGyF0emur0Y-prfvdOM_ESgtJpiYcfpJz94_tBEEHzeLXiNsWg2oF98GrPpOX1bV-XIzBAsH7zZ0PQklw4PHIk76eLngRutSaYa4JdjtYmCCLFEhU9zd0ha2a1_d6cbO750Qy_3LBj9tH5-LpbKUz3q-VlP7E86MEwOfAUbEQYfvxCJVckp2Do4O58eDm06mWEGnPaIwvEyXgNlGCd583O0EZ0Razu6Te8HaoAceJbtk4qoHpP4JIXRV0gEhdEAI_nAdIbRDCAWE0DFCsPeAEIoIoR1CHpLPbw7PXr9l4eANZsCCbFhsnXSFBLsrTVMrVVJwoeKyFJE2cCMio7nUKioS6bLCwN85Tt1MWiEt8EUe8UdkWq0q95hQrnkmsxk3PMtQXRQ6sS4xpdUqLtJI7BHerVZuQlV6PBzlIu_CD5e5X-Mc1zj3a7xHWD-q9lVZftNfdILIA7P0jDEH-Pxy5JN_HvmU3B3A_4xMm_XGPSd3zLZZfF2_CDj7ASnHpCA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+mechanical+properties+of+high-performance+concrete+via+multi-method+of+regression+tree+approach&rft.jtitle=Materials+today+communications&rft.au=Qi%2C+Rui&rft.au=Wu%2C+Haiyan&rft.au=Qi%2C+Yongjun&rft.au=Tang%2C+HaiLin&rft.date=2024-08-01&rft.pub=Elsevier+Ltd&rft.issn=2352-4928&rft.eissn=2352-4928&rft.volume=40&rft_id=info:doi/10.1016%2Fj.mtcomm.2024.109922&rft.externalDocID=S2352492824019032 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4928&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4928&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4928&client=summon |