Robust DC optimization and its application in medical image processing

Many medical image processing problems can be translated into solving the optimization models. In reality, there are lots of nonconvex optimization problems in medical image processing. In this paper, we focus on a special class of robust nonconvex optimization, namely, robust optimization where giv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Technology and health care Ročník 29; číslo 2; s. 393
Hlavní autoři: Li, Xufang, Wu, Zhong, Zhang, Fang, Qu, Deqiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands 01.01.2021
Témata:
ISSN:1878-7401, 1878-7401
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Many medical image processing problems can be translated into solving the optimization models. In reality, there are lots of nonconvex optimization problems in medical image processing. In this paper, we focus on a special class of robust nonconvex optimization, namely, robust optimization where given the parameters, the objective function can be expressed as the difference of convex functions. We present the necessary condition for optimality under general assumptions. To solve this problem, a sequential robust convex optimization algorithm is proposed. We show that the new algorithm is globally convergent to a stationary point of the original problem under the general assumption about the uncertain set. The application of medical image enhancement is conducted and the numerical result shows its efficiency.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1878-7401
1878-7401
DOI:10.3233/THC-202656