Advances in teaching–learning-based optimization algorithm: A comprehensive survey(ICIC2022)
•Teaching-learning-based optimization (TLBO) is one of population-based heuristic stochastic swarm intelligent algorithm.•In this paper, a comprehensive survey on the recent advances in TLBO is presented.•Literature survey reveals some interesting challenges and future research directions. Teaching-...
Gespeichert in:
| Veröffentlicht in: | Neurocomputing (Amsterdam) Jg. 561; S. 126898 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
07.12.2023
|
| Schlagworte: | |
| ISSN: | 0925-2312 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | •Teaching-learning-based optimization (TLBO) is one of population-based heuristic stochastic swarm intelligent algorithm.•In this paper, a comprehensive survey on the recent advances in TLBO is presented.•Literature survey reveals some interesting challenges and future research directions.
Teaching-learning-based optimization (TLBO) algorithm which imitates the teaching–learning process in a classroom, is one of population-based heuristic stochastic swarm intelligent algorithms. TLBO executes through similar iterative evolution processes as utilized by a standard evolutionary algorithm. Unlike traditional evolutionary algorithms and swarm intelligent algorithms, the iterative computation process of teaching–learning-based optimization is divided into two phases and each phase executes iterative learning operation. In this paper, we present a comprehensive survey on the recent advances in TLBO. A review of the current literature reveals intriguing challenges and suggests potential future research directions. |
|---|---|
| ISSN: | 0925-2312 |
| DOI: | 10.1016/j.neucom.2023.126898 |