Deep embedding clustering based on contractive autoencoder

Clustering large and high-dimensional document data has got a great interest. However, current clustering algorithms lack efficient representation learning. Implementing deep learning techniques in document clustering can strengthen the learning processes. In this work, we simultaneously disentangle...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 433; pp. 96 - 107
Main Authors: Diallo, Bassoma, Hu, Jie, Li, Tianrui, Khan, Ghufran Ahmad, Liang, Xinyan, Zhao, Yimiao
Format: Journal Article
Language:English
Published: Elsevier B.V 14.04.2021
Subjects:
ISSN:0925-2312
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Clustering large and high-dimensional document data has got a great interest. However, current clustering algorithms lack efficient representation learning. Implementing deep learning techniques in document clustering can strengthen the learning processes. In this work, we simultaneously disentangle the problem of learned representation by preserving important information from the initial data while pushing the original samples and their augmentations together in one hand. Furthermore, we handle the cluster locality preservation issue by pushing neighboring data points together. To that end, we first introduce Contractive Autoencoders. Then we propose a deep embedding clustering framework based on contractive autoencoder (DECCA) to learn document representations. Furthermore, to grasp relevant document or word features, we append the Frobenius norm as penalty term to the conventional autoencoder framework, which helps the autoencoder to perform better. In this way, the contractive autoencoders apprehend the local manifold structure of the input data and compete with the representations learned by existing methods. Finally, we confirm the supremacy of our proposed algorithm over the state-of-the-art results on six real-world images and text datasets.
AbstractList Clustering large and high-dimensional document data has got a great interest. However, current clustering algorithms lack efficient representation learning. Implementing deep learning techniques in document clustering can strengthen the learning processes. In this work, we simultaneously disentangle the problem of learned representation by preserving important information from the initial data while pushing the original samples and their augmentations together in one hand. Furthermore, we handle the cluster locality preservation issue by pushing neighboring data points together. To that end, we first introduce Contractive Autoencoders. Then we propose a deep embedding clustering framework based on contractive autoencoder (DECCA) to learn document representations. Furthermore, to grasp relevant document or word features, we append the Frobenius norm as penalty term to the conventional autoencoder framework, which helps the autoencoder to perform better. In this way, the contractive autoencoders apprehend the local manifold structure of the input data and compete with the representations learned by existing methods. Finally, we confirm the supremacy of our proposed algorithm over the state-of-the-art results on six real-world images and text datasets.
Author Liang, Xinyan
Diallo, Bassoma
Li, Tianrui
Zhao, Yimiao
Khan, Ghufran Ahmad
Hu, Jie
Author_xml – sequence: 1
  givenname: Bassoma
  surname: Diallo
  fullname: Diallo, Bassoma
  email: sanediallo2003@yahoo.fr
  organization: Institute of Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China
– sequence: 2
  givenname: Jie
  surname: Hu
  fullname: Hu, Jie
  email: jiehu@swjtu.edu.cn
  organization: Institute of Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China
– sequence: 3
  givenname: Tianrui
  surname: Li
  fullname: Li, Tianrui
  email: trli@swjtu.edu.cn
  organization: Institute of Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China
– sequence: 4
  givenname: Ghufran Ahmad
  surname: Khan
  fullname: Khan, Ghufran Ahmad
  email: ghufraan.alig@gmail.com
  organization: Institute of Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China
– sequence: 5
  givenname: Xinyan
  surname: Liang
  fullname: Liang, Xinyan
  email: liangxinyan48@163.com
  organization: Institute of Big Data Science and Industry, Shanxi University, Taiyuan 030006, Shanxi, China
– sequence: 6
  givenname: Yimiao
  surname: Zhao
  fullname: Zhao, Yimiao
  email: Zymiao@my.swjtu.edu.cn
  organization: Institute of Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China
BookMark eNqFj8tKAzEUhrOoYKu-gYt5gRlzn6YLQeoVCm50HXI5IyltUpK04Ns7ta5c6Nmcww_fz_lmaBJTBISuCe4IJvJm3UXYu7TtKKZjRDus-ARNsaKipYzQczQrZY0x6QlVU7S4B9g1sLXgfYgfjdvsS4V8PK0p4JsUG5dizcbVcIDG7GuC6JKHfInOBrMpcPWzL9D748Pb8rldvT69LO9WrWNY1pYKJZUC7sYRFHrSW2AgqPeiN45ga-UgWe97RZjFfI654GJgUg7KAp8LdoEWp16XUykZBu1CNTV8fxU2mmB9NNdrfTLXR3NNqB7NR5j_gnc5bE3-_A-7PWEwih0CZF1cGL3Bhwyuap_C3wVfLuF5hQ
CitedBy_id crossref_primary_10_3390_s25082622
crossref_primary_10_1109_TNNLS_2021_3135460
crossref_primary_10_1007_s11227_023_05354_5
crossref_primary_10_1371_journal_pone_0309206
crossref_primary_10_1007_s11042_024_20174_2
crossref_primary_10_1016_j_knosys_2025_113609
crossref_primary_10_1007_s13042_024_02173_9
crossref_primary_10_1016_j_neucom_2023_126520
crossref_primary_10_1007_s00521_023_09335_w
crossref_primary_10_1016_j_neucom_2024_128348
crossref_primary_10_1007_s13042_024_02265_6
crossref_primary_10_1016_j_bspc_2022_103537
crossref_primary_10_1016_j_bspc_2022_103856
crossref_primary_10_1109_TIFS_2024_3354412
crossref_primary_10_1007_s40808_023_01717_2
crossref_primary_10_1093_comjnl_bxaf080
crossref_primary_10_3390_app13010674
crossref_primary_10_1007_s11831_025_10260_5
crossref_primary_10_1016_j_knosys_2024_111834
crossref_primary_10_1007_s10115_025_02567_3
crossref_primary_10_1016_j_ymeth_2024_11_013
crossref_primary_10_1080_08874417_2024_2349142
crossref_primary_10_1016_j_engappai_2024_108612
crossref_primary_10_1007_s00530_025_01821_6
crossref_primary_10_1109_JIOT_2022_3214758
crossref_primary_10_1016_j_elerap_2023_101250
crossref_primary_10_3390_app142210154
crossref_primary_10_1016_j_conbuildmat_2024_137227
crossref_primary_10_1007_s10489_022_03895_5
crossref_primary_10_1016_j_ins_2023_119374
crossref_primary_10_1016_j_bspc_2022_103949
crossref_primary_10_1007_s10489_022_03752_5
crossref_primary_10_1016_j_patcog_2023_109764
crossref_primary_10_1016_j_chemolab_2023_104758
crossref_primary_10_1016_j_dsp_2025_105078
crossref_primary_10_1016_j_asoc_2025_113378
crossref_primary_10_3390_app13052942
crossref_primary_10_1016_j_neucom_2023_03_008
crossref_primary_10_1007_s40747_023_01053_z
crossref_primary_10_3233_JIFS_234632
crossref_primary_10_1007_s11053_021_09890_w
crossref_primary_10_1038_s41598_023_32301_4
crossref_primary_10_1016_j_engappai_2024_107881
crossref_primary_10_1016_j_neucom_2024_127596
crossref_primary_10_1016_j_neucom_2022_06_069
crossref_primary_10_1016_j_measurement_2024_115188
crossref_primary_10_3233_JIFS_211191
crossref_primary_10_1007_s10489_023_04716_z
crossref_primary_10_1016_j_sciaf_2025_e02657
crossref_primary_10_1016_j_ipm_2022_103044
crossref_primary_10_1109_JIOT_2023_3316669
crossref_primary_10_1016_j_dsp_2023_104118
crossref_primary_10_1016_j_eswa_2022_119087
crossref_primary_10_1016_j_eswa_2022_118430
crossref_primary_10_1016_j_ins_2024_120191
crossref_primary_10_3390_math11081777
crossref_primary_10_1016_j_neucom_2022_07_017
crossref_primary_10_1016_j_asoc_2025_113335
crossref_primary_10_1016_j_neucom_2022_04_103
crossref_primary_10_1016_j_neucom_2025_129889
crossref_primary_10_1109_ACCESS_2024_3401699
crossref_primary_10_1016_j_neucom_2024_127761
crossref_primary_10_1016_j_bspc_2023_104715
crossref_primary_10_1016_j_compbiomed_2022_106085
crossref_primary_10_1016_j_knosys_2024_112597
crossref_primary_10_1016_j_eswa_2023_121780
Cites_doi 10.1016/j.patcog.2018.05.019
10.1016/j.knosys.2018.02.020
10.1016/j.neucom.2018.10.016
10.1016/j.neunet.2016.12.008
10.1109/TPAMI.2016.2554555
10.1016/j.neucom.2019.11.078
10.1109/ACCESS.2018.2855437
10.1016/j.ins.2015.10.038
10.1016/j.patcog.2019.107015
10.1016/j.eswa.2019.06.068
10.1016/j.knosys.2019.03.007
10.1016/j.knosys.2017.08.010
10.1016/j.neucom.2020.04.120
10.1109/TCSS.2019.2910599
10.1016/j.neunet.2017.02.003
10.1016/j.knosys.2019.01.017
10.1016/j.knosys.2020.106260
10.1109/TKDE.2017.2681669
10.1016/j.neucom.2020.06.013
10.1016/j.jocs.2017.07.018
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.12.094
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 107
ExternalDocumentID 10_1016_j_neucom_2020_12_094
S0925231220320063
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-259699e4cccc52e717be3e52dd57ac10bb6f637d7913b04804545f366f9be4853
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000624358500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 22:11:51 EST 2025
Sat Nov 29 07:16:25 EST 2025
Sun Apr 06 06:58:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Representation learning
Contractive autoencoder
Deep learning
Deep embedding clustering
Document clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-259699e4cccc52e717be3e52dd57ac10bb6f637d7913b04804545f366f9be4853
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2020_12_094
crossref_primary_10_1016_j_neucom_2020_12_094
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_12_094
PublicationCentury 2000
PublicationDate 2021-04-14
PublicationDateYYYYMMDD 2021-04-14
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-14
  day: 14
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kulkarni, Karande, Lodha (b0075) 2016
Caron, Bojanowski, Joulin, Douze (b0215) 2018
Jiang, Zheng, Tan, Tang, Zhou (b0035) 2017
Subramani, Sridhar, Shetty (b0080) 2018
Yang, Parikh, Batra (b0070) 2016
Yu, Wang (b0005) 2020; 411
Wang, Jiang (b0160) 2020; 383
Ailem, Role, Nadif (b0210) 2017; 29
Dahal (b0100) 2018
Mo, Ma (b0135) 2018
Yang, Cheung, Li, Fang (b0230) 2019
Yi, Zhang, Zhao, Wan (b0020) 2017
Hu, Miyato, Tokui, Matsumoto, Sugiyama (b0150) 2017
Peng, Zhu, Feng, Shen, Zhang, Zhou (b0225) 2019
Xu, Dai, Lin, Wang (b0010) 2020; 205
D. Zhang, Y. Sun, B. Eriksson, and L. Balzano, “Deep unsupervised clustering using mixture of autoencoders,” arXiv: Learning, 2017.
Huang, Xu, Lv (b0220) 2018; 148
Yan, Zhang, Ma, Yang (b0015) 2017; 135
Zong, Zhang, Zhao, Yu, Zhao (b0110) 2017; 88
Park, Park, Kim, Cho, Park (b0185) 2019; 137
Xu, Xu, Wang, Zheng, Tian, Zhao (b0175) 2017; 88
Guo, Gao, Liu, Yin (b0060) 2017
Zhang, Li, Wang (b0095) 2019; 174
Ren, Wang, Li, Xu (b0180) 2020
Abualigah, Khader, Hanandeh (b0205) 2018; 25
Lu, Zhao, Zhang, Li (b0200) 2016; 331
Xu, Guan, Zhao, Niu, Wang, Wang (b0105) 2018
Diallo, Hu, Li, Khan, Ji (b0145) 2019
Wang, Cai, Lin, Guo (b0090) 2019; 6
Ren, Hu, Dai, Pan, Hoi, Xu (b0170) 2019; 325
Peng, Xiao, Feng, Yau, Yi (b0045) 2016
Trigeorgis, Bousmalis, Zafeiriou, Schuller (b0115) 2016; 39
Ghasedi Dizaji, Herandi, Deng, Cai, Huang (b0130) 2017
Law, Urtasun, Zemel (b0030) 2017
Rifai, Vincent, Muller, Glorot, Bengio (b0140) 2011
Tian, Gao, Cui, Chen, Liu (b0040) 2014
Li, Qiao, Zhang (b0065) 2018; 83
Wang, Peng, Hu, Sang (b0190) 2019; 168
Guo, Zhu, Liu, Yin (b0165) 2018
Guo, Liu, Zhu, Yin (b0055) 2017
E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, J. Long, A survey of clustering with deep learning: From the perspective of network architecture, IEEE Access 6 (2018) 39501–39514.
Xie, Girshick, Farhadi (b0050) 2016
Huang, Zhang, Peng, Dan, Weng, Cai (b0155) 2020; 404
Huang, Huang, Wang, Wang (b0125) 2014
S. Huang, Z. Kang, Z. Xu, Auto-weighted multi-view clustering via deep matrix decomposition, Pattern Recognition 97 (2020) (Article 107015).
Yang, Fu, Sidiropoulos, Hong (b0195) 2017
Guo (10.1016/j.neucom.2020.12.094_b0165) 2018
Caron (10.1016/j.neucom.2020.12.094_b0215) 2018
Dahal (10.1016/j.neucom.2020.12.094_b0100) 2018
Huang (10.1016/j.neucom.2020.12.094_b0220) 2018; 148
Yan (10.1016/j.neucom.2020.12.094_b0015) 2017; 135
Tian (10.1016/j.neucom.2020.12.094_b0040) 2014
Guo (10.1016/j.neucom.2020.12.094_b0055) 2017
Yu (10.1016/j.neucom.2020.12.094_b0005) 2020; 411
Ailem (10.1016/j.neucom.2020.12.094_b0210) 2017; 29
Ren (10.1016/j.neucom.2020.12.094_b0180) 2020
Xie (10.1016/j.neucom.2020.12.094_b0050) 2016
Guo (10.1016/j.neucom.2020.12.094_b0060) 2017
Peng (10.1016/j.neucom.2020.12.094_b0045) 2016
Wang (10.1016/j.neucom.2020.12.094_b0190) 2019; 168
10.1016/j.neucom.2020.12.094_b0085
Wang (10.1016/j.neucom.2020.12.094_b0090) 2019; 6
Ren (10.1016/j.neucom.2020.12.094_b0170) 2019; 325
Yi (10.1016/j.neucom.2020.12.094_b0020) 2017
Zhang (10.1016/j.neucom.2020.12.094_b0095) 2019; 174
10.1016/j.neucom.2020.12.094_b0120
Abualigah (10.1016/j.neucom.2020.12.094_b0205) 2018; 25
Rifai (10.1016/j.neucom.2020.12.094_b0140) 2011
Law (10.1016/j.neucom.2020.12.094_b0030) 2017
Ghasedi Dizaji (10.1016/j.neucom.2020.12.094_b0130) 2017
Huang (10.1016/j.neucom.2020.12.094_b0155) 2020; 404
Xu (10.1016/j.neucom.2020.12.094_b0010) 2020; 205
10.1016/j.neucom.2020.12.094_b0025
Subramani (10.1016/j.neucom.2020.12.094_b0080) 2018
Huang (10.1016/j.neucom.2020.12.094_b0125) 2014
Wang (10.1016/j.neucom.2020.12.094_b0160) 2020; 383
Kulkarni (10.1016/j.neucom.2020.12.094_b0075) 2016
Zong (10.1016/j.neucom.2020.12.094_b0110) 2017; 88
Hu (10.1016/j.neucom.2020.12.094_b0150) 2017
Jiang (10.1016/j.neucom.2020.12.094_b0035) 2017
Yang (10.1016/j.neucom.2020.12.094_b0070) 2016
Trigeorgis (10.1016/j.neucom.2020.12.094_b0115) 2016; 39
Mo (10.1016/j.neucom.2020.12.094_b0135) 2018
Diallo (10.1016/j.neucom.2020.12.094_b0145) 2019
Li (10.1016/j.neucom.2020.12.094_b0065) 2018; 83
Park (10.1016/j.neucom.2020.12.094_b0185) 2019; 137
Yang (10.1016/j.neucom.2020.12.094_b0195) 2017
Lu (10.1016/j.neucom.2020.12.094_b0200) 2016; 331
Yang (10.1016/j.neucom.2020.12.094_b0230) 2019
Xu (10.1016/j.neucom.2020.12.094_b0175) 2017; 88
Xu (10.1016/j.neucom.2020.12.094_b0105) 2018
Peng (10.1016/j.neucom.2020.12.094_b0225) 2019
References_xml – start-page: 5147
  year: 2016
  end-page: 5156
  ident: b0070
  article-title: Joint unsupervised learning of deep representations and image clusters
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2169
  year: 2018
  end-page: 2173
  ident: b0080
  article-title: A novel approach of neural topic modelling for document clustering
  publication-title: Proceedings of the IEEE Symposium Series on Computational Intelligence
– reference: S. Huang, Z. Kang, Z. Xu, Auto-weighted multi-view clustering via deep matrix decomposition, Pattern Recognition 97 (2020) (Article 107015).
– volume: 148
  start-page: 74
  year: 2018
  end-page: 84
  ident: b0220
  article-title: Adaptive local structure learning for document co-clustering
  publication-title: Knowledge-Based Systems
– volume: 137
  start-page: 157
  year: 2019
  end-page: 166
  ident: b0185
  article-title: ADC: Advanced document clustering using contextualized representations
  publication-title: Expert Systems with Applications
– start-page: 1532
  year: 2014
  end-page: 1537
  ident: b0125
  article-title: Deep embedding network for clustering
  publication-title: Proceedings of the 22nd International Conference on Pattern Recognition
– start-page: 1
  year: 2019
  end-page: 12
  ident: b0225
  article-title: Deep clustering with sample-assignment invariance prior
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 6
  start-page: 504
  year: 2019
  end-page: 517
  ident: b0090
  article-title: An overview of unsupervised deep feature representation for text categorization
  publication-title: IEEE Transactions on Computational Social Systems
– start-page: 1293
  year: 2014
  end-page: 1299
  ident: b0040
  article-title: Learning deep representations for graph clustering
  publication-title: Proceedings of the 28th AAAI Conference on Artificial Intelligence
– volume: 88
  start-page: 22
  year: 2017
  end-page: 31
  ident: b0175
  article-title: Self-taught convolutional neural networks for short text clustering
  publication-title: Neural Networks
– start-page: 1258
  year: 2019
  end-page: 1264
  ident: b0145
  article-title: Concept-enhanced multi-view clustering of document data
  publication-title: Proceedings of the 14th International Conference on Intelligent Systems and Knowledge Engineering
– start-page: 1
  year: 2020
  end-page: 10
  ident: b0180
  article-title: Deep density-based image clustering
  publication-title: Knowledge-Based Systems
– volume: 331
  start-page: 86
  year: 2016
  end-page: 98
  ident: b0200
  article-title: Semi-supervised concept factorization for document clustering
  publication-title: Information Sciences
– volume: 411
  start-page: 216
  year: 2020
  end-page: 228
  ident: b0005
  article-title: DCSR: Deep clustering under similarity and reconstruction constraints
  publication-title: Neurocomputing
– volume: 25
  start-page: 456
  year: 2018
  end-page: 466
  ident: b0205
  article-title: A new feature selection method to improve the document clustering using particle swarm optimization algorithm
  publication-title: Journal of Computational Science
– volume: 205
  start-page: 1
  year: 2020
  end-page: 8
  ident: b0010
  article-title: Deep clustering by maximizing mutual information in variational auto-encoder
  publication-title: Knowledge-Based Systems
– start-page: 1
  year: 2017
  end-page: 13
  ident: b0020
  article-title: A novel text clustering approach using deep-learning vocabulary network
  publication-title: Mathematical Problems in Engineering
– start-page: 1558
  year: 2017
  end-page: 1567
  ident: b0150
  article-title: Learning discrete representations via information maximizing self-augmented training
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– reference: D. Zhang, Y. Sun, B. Eriksson, and L. Balzano, “Deep unsupervised clustering using mixture of autoencoders,” arXiv: Learning, 2017.
– start-page: 1965
  year: 2017
  end-page: 1972
  ident: b0035
  article-title: Variational deep embedding: an unsupervised and generative approach to clustering
  publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence
– volume: 404
  start-page: 340
  year: 2020
  end-page: 350
  ident: b0155
  article-title: Deep subspace clustering to achieve jointly latent feature extraction and discriminative learning
  publication-title: Neurocomputing
– start-page: 1925
  year: 2016
  end-page: 1931
  ident: b0045
  article-title: Deep subspace clustering with sparsity prior
  publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence
– start-page: 1
  year: 2018
  end-page: 5
  ident: b0135
  article-title: DocNet: A document embedding approach based on neural networks
  publication-title: Proceedings of the 24th International Conference on Automation and Computing
– volume: 325
  start-page: 121
  year: 2019
  end-page: 130
  ident: b0170
  article-title: Semi-supervised deep embedded clustering
  publication-title: Neurocomputing
– start-page: 6440
  year: 2019
  end-page: 6449
  ident: b0230
  article-title: Deep clustering by gaussian mixture variational autoencoders with graph embedding
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 833
  year: 2011
  end-page: 840
  ident: b0140
  article-title: Contractive auto-encoders: explicit invariance during feature extraction
  publication-title: Proceedings of the 28th International Conference on Machine Learning
– start-page: 132
  year: 2018
  end-page: 149
  ident: b0215
  article-title: Deep clustering for unsupervised learning of visual features
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 174
  start-page: 194
  year: 2019
  end-page: 204
  ident: b0095
  article-title: Learning document representation via topic-enhanced LSTM model
  publication-title: Knowledge-Based Systems
– start-page: 550
  year: 2018
  end-page: 565
  ident: b0165
  article-title: Deep embedded clustering with data augmentation
  publication-title: Proceedings of the Asian Conference on Machine Learning
– volume: 135
  start-page: 147
  year: 2017
  end-page: 158
  ident: b0015
  article-title: A novel regularized concept factorization for document clustering
  publication-title: Knowledge-Based Systems
– volume: 29
  start-page: 1563
  year: 2017
  end-page: 1576
  ident: b0210
  article-title: Sparse poisson latent block model for document clustering
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 1985
  year: 2017
  end-page: 1994
  ident: b0030
  article-title: Deep spectral clustering learning
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– start-page: 2898
  year: 2018
  end-page: 2904
  ident: b0105
  article-title: Deep multi-view concept learning
  publication-title: Proceedings of the International Joint Conference on Artificial Intelligence
– start-page: 373
  year: 2017
  end-page: 382
  ident: b0055
  article-title: Deep clustering with convolutional autoencoders
  publication-title: Proceedings of the International Conference on Neural Information Processing
– start-page: 478
  year: 2016
  end-page: 487
  ident: b0050
  article-title: Unsupervised deep embedding for clustering analysis
  publication-title: Proceedings of the International Conference on Machine Learning
– volume: 383
  start-page: 10
  year: 2020
  end-page: 23
  ident: b0160
  article-title: Sa-Net: A deep spectral analysis network for image clustering
  publication-title: Neurocomputing
– start-page: 263
  year: 2016
  end-page: 268
  ident: b0075
  article-title: Unsupervised word clustering using deep features
  publication-title: Proceedings of the 12th IAPR Workshop on Document Analysis Systems
– start-page: 3747
  year: 2018
  end-page: 3755
  ident: b0100
  article-title: Learning embedding space for clustering from deep representations
  publication-title: Proceedings of the IEEE International Conference on Big Data
– start-page: 5736
  year: 2017
  end-page: 5745
  ident: b0130
  article-title: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 168
  start-page: 109
  year: 2019
  end-page: 120
  ident: b0190
  article-title: Adversarial correlated autoencoder for unsupervised multi-view representation learning
  publication-title: Knowledge Based Systems
– volume: 39
  start-page: 417
  year: 2016
  end-page: 429
  ident: b0115
  article-title: A deep matrix factorization method for learning attribute representations
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 83
  start-page: 161
  year: 2018
  end-page: 173
  ident: b0065
  article-title: Discriminatively boosted image clustering with fully convolutional auto-encoders
  publication-title: Pattern Recognition
– reference: E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, J. Long, A survey of clustering with deep learning: From the perspective of network architecture, IEEE Access 6 (2018) 39501–39514.
– start-page: 1753
  year: 2017
  end-page: 1759
  ident: b0060
  article-title: Improved deep embedded clustering with local structure preservation
  publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence
– volume: 88
  start-page: 74
  year: 2017
  end-page: 89
  ident: b0110
  article-title: Multi-view clustering via multi-manifold regularized non-negative matrix factorization
  publication-title: Neural Networks
– start-page: 3861
  year: 2017
  end-page: 3870
  ident: b0195
  article-title: Towards k-means-friendly spaces: simultaneous deep learning and clustering
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2020.12.094_b0225
  article-title: Deep clustering with sample-assignment invariance prior
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 83
  start-page: 161
  year: 2018
  ident: 10.1016/j.neucom.2020.12.094_b0065
  article-title: Discriminatively boosted image clustering with fully convolutional auto-encoders
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2018.05.019
– volume: 148
  start-page: 74
  year: 2018
  ident: 10.1016/j.neucom.2020.12.094_b0220
  article-title: Adaptive local structure learning for document co-clustering
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.02.020
– volume: 325
  start-page: 121
  year: 2019
  ident: 10.1016/j.neucom.2020.12.094_b0170
  article-title: Semi-supervised deep embedded clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.016
– volume: 88
  start-page: 22
  year: 2017
  ident: 10.1016/j.neucom.2020.12.094_b0175
  article-title: Self-taught convolutional neural networks for short text clustering
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2016.12.008
– start-page: 1
  year: 2018
  ident: 10.1016/j.neucom.2020.12.094_b0135
  article-title: DocNet: A document embedding approach based on neural networks
– volume: 39
  start-page: 417
  issue: 3
  year: 2016
  ident: 10.1016/j.neucom.2020.12.094_b0115
  article-title: A deep matrix factorization method for learning attribute representations
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2554555
– volume: 383
  start-page: 10
  year: 2020
  ident: 10.1016/j.neucom.2020.12.094_b0160
  article-title: Sa-Net: A deep spectral analysis network for image clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.078
– ident: 10.1016/j.neucom.2020.12.094_b0085
  doi: 10.1109/ACCESS.2018.2855437
– start-page: 1965
  year: 2017
  ident: 10.1016/j.neucom.2020.12.094_b0035
  article-title: Variational deep embedding: an unsupervised and generative approach to clustering
– start-page: 1532
  year: 2014
  ident: 10.1016/j.neucom.2020.12.094_b0125
  article-title: Deep embedding network for clustering
– start-page: 1753
  year: 2017
  ident: 10.1016/j.neucom.2020.12.094_b0060
  article-title: Improved deep embedded clustering with local structure preservation
– start-page: 3861
  year: 2017
  ident: 10.1016/j.neucom.2020.12.094_b0195
  article-title: Towards k-means-friendly spaces: simultaneous deep learning and clustering
– volume: 331
  start-page: 86
  year: 2016
  ident: 10.1016/j.neucom.2020.12.094_b0200
  article-title: Semi-supervised concept factorization for document clustering
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2015.10.038
– start-page: 373
  year: 2017
  ident: 10.1016/j.neucom.2020.12.094_b0055
  article-title: Deep clustering with convolutional autoencoders
– start-page: 1293
  year: 2014
  ident: 10.1016/j.neucom.2020.12.094_b0040
  article-title: Learning deep representations for graph clustering
– start-page: 833
  year: 2011
  ident: 10.1016/j.neucom.2020.12.094_b0140
  article-title: Contractive auto-encoders: explicit invariance during feature extraction
– ident: 10.1016/j.neucom.2020.12.094_b0120
  doi: 10.1016/j.patcog.2019.107015
– start-page: 6440
  year: 2019
  ident: 10.1016/j.neucom.2020.12.094_b0230
  article-title: Deep clustering by gaussian mixture variational autoencoders with graph embedding
– start-page: 1
  year: 2020
  ident: 10.1016/j.neucom.2020.12.094_b0180
  article-title: Deep density-based image clustering
  publication-title: Knowledge-Based Systems
– start-page: 3747
  year: 2018
  ident: 10.1016/j.neucom.2020.12.094_b0100
  article-title: Learning embedding space for clustering from deep representations
– start-page: 1258
  year: 2019
  ident: 10.1016/j.neucom.2020.12.094_b0145
  article-title: Concept-enhanced multi-view clustering of document data
– volume: 137
  start-page: 157
  year: 2019
  ident: 10.1016/j.neucom.2020.12.094_b0185
  article-title: ADC: Advanced document clustering using contextualized representations
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.06.068
– ident: 10.1016/j.neucom.2020.12.094_b0025
– start-page: 2898
  year: 2018
  ident: 10.1016/j.neucom.2020.12.094_b0105
  article-title: Deep multi-view concept learning
– start-page: 478
  year: 2016
  ident: 10.1016/j.neucom.2020.12.094_b0050
  article-title: Unsupervised deep embedding for clustering analysis
– start-page: 1
  year: 2017
  ident: 10.1016/j.neucom.2020.12.094_b0020
  article-title: A novel text clustering approach using deep-learning vocabulary network
  publication-title: Mathematical Problems in Engineering
– volume: 174
  start-page: 194
  year: 2019
  ident: 10.1016/j.neucom.2020.12.094_b0095
  article-title: Learning document representation via topic-enhanced LSTM model
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.03.007
– start-page: 5147
  year: 2016
  ident: 10.1016/j.neucom.2020.12.094_b0070
  article-title: Joint unsupervised learning of deep representations and image clusters
– volume: 135
  start-page: 147
  year: 2017
  ident: 10.1016/j.neucom.2020.12.094_b0015
  article-title: A novel regularized concept factorization for document clustering
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.08.010
– volume: 404
  start-page: 340
  year: 2020
  ident: 10.1016/j.neucom.2020.12.094_b0155
  article-title: Deep subspace clustering to achieve jointly latent feature extraction and discriminative learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.120
– start-page: 263
  year: 2016
  ident: 10.1016/j.neucom.2020.12.094_b0075
  article-title: Unsupervised word clustering using deep features
– start-page: 5736
  year: 2017
  ident: 10.1016/j.neucom.2020.12.094_b0130
  article-title: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization
– volume: 6
  start-page: 504
  year: 2019
  ident: 10.1016/j.neucom.2020.12.094_b0090
  article-title: An overview of unsupervised deep feature representation for text categorization
  publication-title: IEEE Transactions on Computational Social Systems
  doi: 10.1109/TCSS.2019.2910599
– volume: 88
  start-page: 74
  year: 2017
  ident: 10.1016/j.neucom.2020.12.094_b0110
  article-title: Multi-view clustering via multi-manifold regularized non-negative matrix factorization
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2017.02.003
– volume: 168
  start-page: 109
  year: 2019
  ident: 10.1016/j.neucom.2020.12.094_b0190
  article-title: Adversarial correlated autoencoder for unsupervised multi-view representation learning
  publication-title: Knowledge Based Systems
  doi: 10.1016/j.knosys.2019.01.017
– volume: 205
  start-page: 1
  year: 2020
  ident: 10.1016/j.neucom.2020.12.094_b0010
  article-title: Deep clustering by maximizing mutual information in variational auto-encoder
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106260
– start-page: 1558
  year: 2017
  ident: 10.1016/j.neucom.2020.12.094_b0150
  article-title: Learning discrete representations via information maximizing self-augmented training
– start-page: 1925
  year: 2016
  ident: 10.1016/j.neucom.2020.12.094_b0045
  article-title: Deep subspace clustering with sparsity prior
– start-page: 2169
  year: 2018
  ident: 10.1016/j.neucom.2020.12.094_b0080
  article-title: A novel approach of neural topic modelling for document clustering
– start-page: 1985
  year: 2017
  ident: 10.1016/j.neucom.2020.12.094_b0030
  article-title: Deep spectral clustering learning
– volume: 29
  start-page: 1563
  issue: 7
  year: 2017
  ident: 10.1016/j.neucom.2020.12.094_b0210
  article-title: Sparse poisson latent block model for document clustering
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2017.2681669
– start-page: 132
  year: 2018
  ident: 10.1016/j.neucom.2020.12.094_b0215
  article-title: Deep clustering for unsupervised learning of visual features
– start-page: 550
  year: 2018
  ident: 10.1016/j.neucom.2020.12.094_b0165
  article-title: Deep embedded clustering with data augmentation
– volume: 411
  start-page: 216
  year: 2020
  ident: 10.1016/j.neucom.2020.12.094_b0005
  article-title: DCSR: Deep clustering under similarity and reconstruction constraints
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.06.013
– volume: 25
  start-page: 456
  year: 2018
  ident: 10.1016/j.neucom.2020.12.094_b0205
  article-title: A new feature selection method to improve the document clustering using particle swarm optimization algorithm
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2017.07.018
SSID ssj0017129
Score 2.60092
Snippet Clustering large and high-dimensional document data has got a great interest. However, current clustering algorithms lack efficient representation learning....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 96
SubjectTerms Contractive autoencoder
Deep embedding clustering
Deep learning
Document clustering
Representation learning
Title Deep embedding clustering based on contractive autoencoder
URI https://dx.doi.org/10.1016/j.neucom.2020.12.094
Volume 433
WOSCitedRecordID wos000624358500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017129
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbtpode-i5NX-jQ2-ISS7Zk5bZt0iYhhEKSsjcjWTLrJetdNuuSn5_Rw16nG9KmUB-MMZZlZj6PPo1GMwh9glGdMEN1RKQgEfB_GUkgohFJC5ZKVXLmonx_HvOTk2w8Fj9CKO-lKyfA6zq7uhKL_6pquAfKtltn76Hu7qVwA65B6XAGtcP5rxS_Z8xiaGbKaLdfpbhobC4Ee2lHLG1XB1x8unSWbiib1dwms9QhTHfapnNqYGhzJR-CM2E0s-_RFkCd82CvkmHt5guQ8Pnaxh80Dh5VB5vjyiND1sum6qz8xLtfv0-aEsbM4Wgyk7rvhyCxXVKJ137IzQ0y3stI0ggo5A2Dm1DaM5mC9QbfUAJ3w657F8P0c20aG-QD_e84L64vkPxbxuxT26vt1FWHBw72EG0RnopsgLZGh_vjo26ZicfEJ2MMX9nurXQBgJt93c5denzk7Bl6EiYSeOQB8Bw9MPUL9LQt0oGDzX6Jdi0ecIcHvMYDdnjA8xr38IB7eHiFzr_tn309iELBjKiAmd8KfjDBhDBJAUdKDMzUlaEmJVqnXBbxjlKsZJRrLmKqbDKBBPhzSRkrhTIJELfXaFDPa_MGYarBkguldEx0wrTIRGzgEW64IiKTyTairSjyImSTt0VNLvI2bHCaewHmVoB5THIQ4DaKulYLn03lD8_zVsp5YISe6eUAjDtbvv3nlu_Q4zW836PBatmYD-hR8WtVXS4_BgRdA4urhfM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+embedding+clustering+based+on+contractive+autoencoder&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Diallo%2C+Bassoma&rft.au=Hu%2C+Jie&rft.au=Li%2C+Tianrui&rft.au=Khan%2C+Ghufran+Ahmad&rft.date=2021-04-14&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.volume=433&rft.spage=96&rft.epage=107&rft_id=info:doi/10.1016%2Fj.neucom.2020.12.094&rft.externalDocID=S0925231220320063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon